Skip to main content
Log in

Peroxidation of lipids and growth inhibition induced by UV-B irradiation

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Cotyledons excised from dark-grown seedlings of cucumber (Cucumis sativus L.) were cultured in vitro under UV radiation at different wavelengths, obtained by passage of light through cut-off filters with different transmittance properties. Growth and the synthesis of chlorophyll (Chl) in cotyledons were inhibited and malondialdehyde was accumulated upon irradiation at wavelengths below 320 nm. Exogenous application of scavengers of free radicals reversed the growth inhibition induced by UV-B. Measurement of the fluorescence of Chl a suggested that electron transfer in photosystems was affected by UV-B irradiation. On the basis of these results, the involvement is postulated of active species of oxygen in damages to thylakoid membranes and the growth inhibition that are induced by UV-B irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Chl:

chlorophyll

Fm :

maximal fluorescence (dark)

F′m :

maximal fluorescence (light)

Fv :

variable fluorescence (dark)

F′v :

variable fluorescence (light)

MDA:

malondialdehyde

O2 :

Superoxide radical

PS:

photosystem

qN :

non-photochemical quenching of fluorescence

qP :

photochemical quenching of fluorescence

UV-BBE :

biologically effective UV-B radiation

WL(T = 0.5):

wavelength at which 50% transmittance occurs

References

  • Bornman JF, Evert RF, Mierzwa RJ (1983) Protoplasma 117: 7–16

    Google Scholar 

  • Bowler C, Montagu MV, Inzé D (1992) Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 83–116

    Google Scholar 

  • Brandle JR, Campbell WF, Sisson WB, Caldwell MM (1977) Plant Physiol 60: 165–169

    Google Scholar 

  • Bruggemann W (1992) Photosynth. Res. 34: 301–310

    Google Scholar 

  • Caldwell MM (1971) In: Giese AC (ed) Photophysiology. Academic Press, New York, pp. 131–177

    Google Scholar 

  • Chow WS, Strid A, Anderson JM (1992) In Murata N (ed) Research in Photosynthesis, vol 4. Kluwer Academic Publishers, Netherlands, pp 361–364

    Google Scholar 

  • Elstner EF (1982) Ann. Rev. Plant Physiol. 33: 73–96

    Google Scholar 

  • Genty B, Harbinson J, Briantais J-M, Neil RB (1989) Biochim. Biophys. Acta 990: 87–92

    Google Scholar 

  • Greenberg BM, Gaba V, Canaani O, Malkin S, Mattoo AK, Edelman M (1989) Proc. Natl. Acad. Sci. USA 86: 6617–6620

    Google Scholar 

  • Heath RL, Packer L (1968) Arch. Biochem. Biophys. 125: 189–198

    Google Scholar 

  • Iwanzik W, Tevini M, Dohnt G, Voss M, Weiss W, Graber P, Renger G (1983) Physiol. Plant. 58: 401–407

    Google Scholar 

  • Kramer GF, Baker JC, Ames BN (1988) J. Bacteriol. 170: 2344–2351

    Google Scholar 

  • Kramer GF, Norman HA, Krizek DT, Mirecki RM (1991) Phytochemistry 30: 2101–2108

    Google Scholar 

  • Krause GH, Weis E (1991) Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 313–349

    Google Scholar 

  • Krupa Z, Öquist G, Huner NPA (1993) Physiol. Plant. 88: 626–630

    Google Scholar 

  • Molina MJ, Rowland FS (1974) Nature 249: 810–812

    Google Scholar 

  • Monk LS, Fagerstedt KV, Crawford RMM (1989) Physiol. Plant. 76: 456–459

    Google Scholar 

  • Panagopoulus I, Bornman JF, Björn LO (1990) J. Photochem. Photobiol. B: Biol. 8: 73–87

    Google Scholar 

  • Panagopoulus I, Bornman JF, Björn LO (1992) Physiol. Plant. 84: 140–145

    Google Scholar 

  • Peak JG, Peak MJ, MacCoss M (1984) Photochem. Photobiol. 39: 713–716

    Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Biochim. Biophys. Acta 975: 384–394

    Google Scholar 

  • Renger G, Voss M, Gräber P, Schulze A (1986) In: Worrest RC, Caldwell MM (eds) Stratospheric Ozone Reduction, Solar Ultraviolet Radiation and Plant Life. Springer-Verlag, Berlin, pp. 171–184

    Google Scholar 

  • Sakaki T, Kondo N, Sugahara K (1983) Physiol. Plant. 59: 28–34

    Google Scholar 

  • Shibata H, Baba K, Ochiai H (1991) Plant Cell Physiol. 32: 771–776

    Google Scholar 

  • Shimazaki K, Sakaki T, Kondo N, Sugahara K (1980) Plant Cell Physiol. 21: 1193–1204

    Google Scholar 

  • Sisson WB (1986) In: Worrest RC, Caldwell MM (eds) Stratospheric Ozone Reduction, Solar Ultraviolet Radiation and Plant Life. Springer-Verlag, Berlin, pp. 161–169

    Google Scholar 

  • Sullivan JH, Teramura AH (1994) Plant Cell Environ. 17: 311–317

    Google Scholar 

  • Takeuchi Y, Akizuki M, Shimizu H, Kondo N, Sugahara K (1989) Physiol. Plant. 76: 425–430

    Google Scholar 

  • Takeuchi Y, Amino S (1984) Plant Cell Physiol. 25: 1589–1593

    Google Scholar 

  • Takeuchi Y, Ikeda S, Kasahara H (1993) Plant Cell Physiol. 34: 913–917

    Google Scholar 

  • Takeuchi Y, Saito M, Kondo N, Sugahara K (1985) Plant Cell Physiol. 26: 123–130

    Google Scholar 

  • Teramura AH (1983) Physiol. Plant. 58: 415–427

    Google Scholar 

  • Terashima I, Sonoike K, Kawazu T, Katoh S (1991) Plant Cell Physiol. 32: 1275–1283

    Google Scholar 

  • van Kooten O, Snel JFH (1990) Photosynth. Res. 25: 147–150

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Komamine

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeuchi, Y., Fukumoto, R., Kasahara, H. et al. Peroxidation of lipids and growth inhibition induced by UV-B irradiation. Plant Cell Reports 14, 566–570 (1995). https://doi.org/10.1007/BF00231939

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00231939

Key words

Navigation