Skip to main content
Log in

Projections from the superior colliculus to a region of the central mesencephalic reticular formation (cMRF) associated with horizontal saccadic eye movements

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Radioactive wheatgerm agglutinin (WGA) and horseradish peroxidase (HRP) were injected into portions of the mesencephalic reticular formation at sites where electrical stimulation induced either small or large contralateral horizontal saccadic eye movements. We have designated this region as the Central MRF (cMRF). It contains both cells and fiber tracts, including the efferent output of the superior colliculus (SC), destined for the dorsal tegmental decussation and the predorsal bundle. Cells labelled by WGA and HRP injections were found in the intermediate and deep layers of the superior colliculus and the adjacent central gray matter on the ipsilateral side. Injections into the dorsal cMRF, at sites where small saccades were induced, caused labelling of cells in the rostral intermediate layer of SC. Injections into the ventral cMRF, at points where large saccades were elicited, caused labelling of cells in the caudal intermediate layer of SC. The deepest layers of SC and the adjacent central gray were also labelled from the small eye movement region of dorsal cMRF. We interpret these findings to indicate that the intermediate layers of SC send axonal projections to the horizontal eye movement region of the MRF in a topographic fashion. The projection from the intermediate layer is organized so that regions in SC and cMRF related to small or to large eye movements are interconnected. The results support the hypothesis that cMRF is a topographically organized area, involved, like SC, in the control of eye movements. Since both cMRF and the superior colliculus project to areas of the pons and medulla where saccadic eye movements are produced, they could give rise to parallel pathways for the generation of contralateral saccades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

III:

oculomotor nucleus

IV:

trochlear nucleus

ap:

area pretectalis

BC:

brachium conjunctivum

BSC:

brachium of the superior colliculus

cg:

central gray

cMRF:

central MRF

d:

deep layer of SC

DAB:

diaminobenzidine

EOG:

electro-oculography

h:

habenula nuclei

HRP:

horseradish peroxidase

iC:

interstitial nucleus of Cajal

ic:

inferior colliculus

li:

nucleus limitans

mg:

medial geniculate body

MLF:

medial longitudinal fasciculus

nIII:

oculomotor nerve

nIV:

trochlear nerve

on:

olivary nucleus

p:

pulvinar

PC:

posterior commissure

riMLF:

rostral interstitial nucleus of the MLF

rn:

red nucleus, pars magnocellularis

rnp:

red nucleus, pars parvocellularis

s:

superficial layer of SC

SC:

superior colliculus

sl:

sublentiform nucleus

sn:

substantia nigra

TMB:

tetramethyl benzidine

TR:

tractus retroflexus

WGA:

wheatgerm agglutinin

References

  • Baker R, Baker H, Blanchard J, Shaw M, Soriano D (1981) Antero- and retrograde transport of wheatgerm agglutinin following extra- and intracellular injection in the cat vestibulo-oculomotor system. Soc Neurosci Abstr 7: 489

    Google Scholar 

  • Bender MB, Shanzer S (1964) Oculomotor pathways defined by electric stimulation and lesions in the brainstem of monkeys. In: Bender MB (ed) The oculomotor system. Harper & Row, New York, pp 81–140

    Google Scholar 

  • Benevento LA, Fallon JH (1975) The ascending projections of the superior colliculus in the rhesus monkey (Macaca mulatta). J Comp Neur 160: 339–362

    Google Scholar 

  • Bolton AE (1979) Radioiodination Techniques. The Radiochemical Centre Ltd., Amersham Bucks, England

    Google Scholar 

  • Büttner-Ennever JA, Grob P, Akert K, Bizzini B (1981) Transynaptic retrograde labelling in the oculomotor system of the monkey with (125I) tetanus toxin BIIb fragment. Neurosci Lett 26: 233–238

    Google Scholar 

  • Cohen B, Büttner-Ennever J, Waitzman D, Bender MB (1981) Anatomical connections of a portion of the dorsolateral mesencephalic reticular formation of the monkey associated with horizontal saccadic eye movements. Soc Neurosci Abstr 7: 132

    Google Scholar 

  • Cohen B, Matsuo V, Raphan T, Waitzman D, Fradin J (1982) Horizontal saccades induced by stimulation of the mesencephalic reticular formation. In: Roucoux A, Crommelinck M (eds) Physiological and pathological aspects of eye movements. Dr W Junk Publishers, The Hague, Boston, London pp 325–335

    Google Scholar 

  • Crosby EC, Woodburne RT (1943) The nuclear pattern of the non-tectal portions of the midbrain and isthmus in primates. JComp Neurol 78: 441–481

    Google Scholar 

  • Edwards SB (1975) Autoradiographic studies of the projections of the midbrain reticular formation: descending projections of nucleus cuneiformis. J Comp Neurol 161: 341–358

    Google Scholar 

  • Edwards SB, Henkel CK (1978) Superior colliculus connections with the extraocular motor nuclei in the cat. J Comp Neurol 179: 451–468

    Google Scholar 

  • Edwards SB (1980) The deep cell layers of the superior colliculus: Their reticular characteristics and structural organization. In: Hobson JA, Brazier MD (eds) The Reticular Formation Revisited. Raven Press, New York, pp 193–209

    Google Scholar 

  • Edwards SB, deOlmos JS (1976) Autoradiographic studies of the projections of the midbrain reticular formation: ascending projections of nucleus cuneiformis. J Comp Neurol 165: 417–432

    Google Scholar 

  • Feremutsch K (1965) Mesencephalon. In: Hofer H, Schultz AH, Stark D (eds) Primatologia. Handbuch der Primatenkunde Vol II/2, Karger, Basel, pp 1–174

    Google Scholar 

  • Forel A (1877) Untersuchungen über die Haubenregion und ihre oberen Verknüpfungen im Gehirn des Menschen und einiger Säugetiere mit Beiträgen zu den Methoden der Gehirnuntersuchung. Arch Psychiat 7: 393–493

    Google Scholar 

  • Graham RC Jr, Karnovski MJ (1966) The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney; ultrastructural cytochemistry by a new technique. J Histochem Cytochem 14: 291–302

    Google Scholar 

  • Grantyn A, Grantyn R (1982) Axonal patterns and sites of termination of cat superior colliculus neurons projecting in the tecto-bulbar-spinal tract. Exp Brain Res 46: 243–256

    Google Scholar 

  • Grob P, Büttner-Ennever J, Lang W, Akert K, Fäh A (1982) A comparison of the retrograde tracer properties of (125I) wheat germ agglutinin (WGA) with HRP after injection into the corpus callosum. Brain Res 236: 193–198

    Google Scholar 

  • Guitton D, Crommelinck M, Roucoux A (1980) Stimulation of the superior colliculus in the alert cat. I. Eye movements and neck EMG activity evoked when the head is restrained. Exp Brain Res 39: 63–73

    Google Scholar 

  • Harting JK (1977) Descending pathways from the superior colliculus: an autoradiographic analysis in the rhesus monkey (Macaca mulatta). J Comp Neurol 166: 133–144

    Google Scholar 

  • Harting JK, Huerta MF, Frankfurter AJ, Strominger NL, Royce GJ (1980) Ascending pathways from the monkey superior colliculus: an autoradiographic analysis. J Comp Neurol 192: 853–882

    Google Scholar 

  • Komatsuzaki A, Alpert J, Harris HE, Cohen B (1972) Effects of mesencephalic reticular formation lesions on optokinetic nystagmus. Exp Neurol 34: 522–534

    Google Scholar 

  • Mesulam M-M (1978) Tetramethyl benzidine for horseradish peroxidase neurochemistry: a non carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem 26: 106–117

    CAS  PubMed  Google Scholar 

  • Mesulam M-M (1982) Principles of HRP neurochemistry and their applications for tracing neural pathways: axonal transport, enzyme histochemistry and light microscopic analysis. In: Mesulam M-M (ed) Tracing neural connections with horseradish peroxidase. John Wiley and Sons, New York, p 68

    Google Scholar 

  • Olszewski J, Baxter D (1954) Cytoarchitecture of the human brain stem. Karger, Basel pp 1–199

    Google Scholar 

  • Raphan T, Cohen B (1978) Brainstem mechanisms for rapid and slow eye movements. Ann Rev Physiol 40: 527–552

    Google Scholar 

  • Raybourn MS, Keller EL (1977) Colliculo-reticular organization in primate oculomotor system. J Neurophysiol 40: 861–878

    Google Scholar 

  • Robinson DA (1982) Eye movements evoked by superior collicular stimulation in the alert monkey. Vision Res 12: 1795–1808

    Google Scholar 

  • Roucoux A, Guitton D, Crommelinck M (1980) Stimulation of the superior colliculus in the alert cat. II. Eye and head movements evoked when the head is unrestrained. Exp Brain Res 39: 75–85

    Google Scholar 

  • Schiller PH, Stryker M (1972) Single unit recording and stimulation in superior colliculus of the alert rhesus monkey. J Neurophysiol 35: 915–924

    Google Scholar 

  • Schiller PH, True SD, Conway JL (1980) Deficits in eye movements following frontal eye-field and superior colliculus ablations. J Neurophysiol 44: 1175–1189

    CAS  PubMed  Google Scholar 

  • Shantha TR, Manocha SL, Bourne GHI (1968) Stereotaxic atlas of the Java monkey brain (Macaca iris). The Williams and Wilkins Co, Baltimore, Maryland

    Google Scholar 

  • Stern K (1936) Der Zellaufbau des menschlichen Mittelhirns. Mit einem histopathologischen Anhang. In: Förster O, Gaupp R, Rüdin E (eds) Zeitschrift für die gesamte Neurologie und Psychiatrie. Springer, Berlin, pp 520–598

    Google Scholar 

  • Stöckel K, Paravicini U, Thönen H (1974) Specificity of the retrograde axonal transport of nerve growth factor. Brain Res 76: 413–421

    Google Scholar 

  • Szentágothai J (1943) Die zentrale Innervation der Augenbewegungen. Arch Psychiatr Nervenkr 110: 721–760

    Google Scholar 

  • Taber E (1961) The cytoarchitecture of the brain stem of the cat. I. Brain stem nuclei of cat. J Comp Neurol 116: 27–69

    Google Scholar 

  • Waitzman D (1982) Burst neurons in the mesencephalic reticular formation (MRF) associated with visually-targeted and spontaneous saccades, Ph.D. Thesis, City University of New York

  • Waitzman D, Cohen B (1979) Unit activity in the mesencephalic reticular formation (MRF) associated with saccades and positions of fixation during a visual attention task. Soc Neurosci Abstr 5: 389

    Google Scholar 

  • Weber J, Harting JK (1980) The efferent projections of the pretectal complex: an autoradiographic and horseradish peroxidase analysis. Brain Res 194: 1–2P

    Google Scholar 

  • Wurtz RH, Albano JE (1980) Visual-motor function of the primate superior colliculus. Ann Rev Neurosci 3: 189–226

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by NIH Research grant EY 02296, Deutsche Forschungsgemeinschaft grant SFB 200/A3 and Core Center grant EY 01867

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, B., Büttner-Ennever, J.A. Projections from the superior colliculus to a region of the central mesencephalic reticular formation (cMRF) associated with horizontal saccadic eye movements. Exp Brain Res 57, 167–176 (1984). https://doi.org/10.1007/BF00231143

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00231143

Key words

Navigation