Skip to main content
Log in

Altered coupling states between calcium transport and (Ca2+, Mg2+)-ATPase in the AS-30D Ascites hepatocarcinoma plasma membrane

  • Original Article
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Plasma membrane fractions from normal, regenerating liver and the AS-30D ascites hepatocarcinoma exhibited a high degree of enrichment when a set of plasma membrane enzyme markers were studied in comparison to the ones associated to the mitochondrial and cytosolic compartments. While the (Ca2+, Mg2+)-ATPase observed for the plasma membrane fraction isolated from normal liver showed an activity of 1.2 µmoles/mg/min, the regenerating liver and the AS-30D plasma membrane fractions presented a much lower ATPase activity (0.3 and 0.22 µmoles/mg/min respectively). Despite the differences in ATPase activity observed between models, the plasma membrane fraction from the AS-30D hepatocarcinoma presented a calcium transport activity similar to the value observed for the normal system (5.9 and 5.5 nmoles Ca2+/mg/10min, respectively). Interestingly, the ATP ⇋ Pi exchange experiments carried out with the different plasma membrane fractions revealed that the (Ca2+, Mg2+)-ATPase contained in the plasma membrane from the AS-30D cells shows an exchange activity of 26 nmoles ATP ⇋ Pi/mg/min, similar to the one observed for the enzyme from normal liver (30 nmoles ATP ⇋ Pi/mg/min). Our results suggest that the plasma membrane from the transformed model presents a more efficient mechanism to regulate the movement of calcium through the calcium pump, with an optimum expenditure of energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carafoli E: Intracellular calcium homeostasis. Ann Rev Biochem 56: 395–433, 1987

    Google Scholar 

  2. Rasmussen H, Waisman DM: Modulation of cell function in the calcium messenger system. Rev Physiol Biochem Pharmacol 95: 111–142, 1982

    Google Scholar 

  3. Wallach DFH: Membrane anomalies of neoplastic cells. Med Hypoth 2: 241–246, 1976

    Google Scholar 

  4. Whitfield JF: The roles of calcium and magnesium in cell proliferation. An overview. In: Ions, Cell Proliferation, and Cancer. Academic Press, New York, 1982, pp 283–294

    Google Scholar 

  5. Baker PF, Schapira AHV: Anesthetics increase light emission from aequorin at constant ionised calcium. Nature 284: 168–169, 1980

    Google Scholar 

  6. Jaffe LF: Eggs are activated by a calcium explosion, carcinogenesis may involve calcium adaptation and habituation. In: AL Boynton, WL Mckeehan, JF Whitfield (eds.) Ion, Cell Proliferation, and Cancer. Academic Press, New York, 1982, pp 295–310

    Google Scholar 

  7. Van Rossumm GDV, Galeotti T, Morris HP: The mineral content and water compartments of liver and of Morris hepatoma 5123 tc and 3924A and the changes of composition occurring during necrosis in Hepatoma 3924A. Cancer Res 33: 1078–1085, 1973

    Google Scholar 

  8. Means AR, Rasmussen CD: Calcium calmodulin and cell proliferation. Cell Calcium 9: 313–319, 1988

    Google Scholar 

  9. Criss WE, Kakiuchi S: Calcium, calmodulin and cancer. Fed Proc 41: 2289–2291, 1982

    Google Scholar 

  10. MacManus JP: Calmodulin and Oncomodulin content of tumours. In: AL Boynton, WL McKeehan, JF Whitfield (eds.) Ions, Cell proliferation, and Cancer. Academic Press, New York, 1982, pp 489–498

    Google Scholar 

  11. Dipolo R, Requena J, Brinley FJ, Mullins LS, Scarpa A, Tiffert T: Ionized calcium concentrations in squid axons. J Gen Physiol 67: 433–467, 1976

    Google Scholar 

  12. Debetto P, Catley L: Characterization of a Ca2+-stimulated Mg2+-dependent adenosine triphosphatase in friend murine erythroleukemia cell plasma membranes. J Biol Chem 259: 13824–13831, 1984

    Google Scholar 

  13. Niggli V, Penniston JT, Carafoli E: Purification of the (Ca2+,Mg2+)-ATPase from human erythrocyte membrane using a calmodulin affinity column. J Biol Chem 254: 9955–9958, 1979

    Google Scholar 

  14. Niggli V, Adunyah ES, Penniston JT, Carafoli E: Purified (Ca2+,Mg2+)-ATPase of erythrocyte membrane. Reconstitution and effect of calmodulin and phospholipids. J Biol Chem 256: 395–401, 1981

    Google Scholar 

  15. Pitts BJR: Stoichiometry of sodium-calcium exchange in cardiac sarcolemmal vesicles. J Biol Chem 254: 6232–6235, 1979

    Google Scholar 

  16. Lamers JMJ, Stinis JT: An electrogenic Na+/Ca2+ antiporter in addition to the Ca2+ pump in cardiac sarcolemma. Biochim Biophys Acta 640: 521–534, 1981

    Google Scholar 

  17. Busselen P: Effect of potassium depolarization on sodiumdependent calcium effux from goldfish heart ventricles and guinea-pig atria. J Physiol 327: 309–324, 1982

    Google Scholar 

  18. Pershadsingh HA, Landt M, McDonald JM: A high affinity calcium-stimulated magnesium dependent adenosine triphosphatase in rat adipocyte plasma membranes. J Biol Chem 255: 8983–8986, 1980

    Google Scholar 

  19. Nellans HN, Popovitch JE: Calmodulin-regulated ATP-driven calcium transport by basolateral membranes of rat small intestine. J Biol Chem 256: 9932–9936, 1981

    Google Scholar 

  20. Dipolo R: Ca pump driven by ATP in squid axons. Nature 274: 390–392, 1978

    Google Scholar 

  21. Dipolo R, Beaugué L: Physiological role of ATP-driven calcium pump in squid axons. Nature 278: 271–273, 1979]

    Google Scholar 

  22. Wuytack F, de Shutter G, Casteels R: Partial purification of (Ca2+-Mg2+)-dependent ATPase from pig smooth muscle and reconstitution of an ATP-dependent Ca2+-transport system. Biochem J 198: 265–271, 1981

    Google Scholar 

  23. Michaelis EK, Michaelis ML, Chang HA, Kitos TE: High affinity Ca2+-stimulated Mg2+-dependent ATPase in rat brain, synaptosomes, synaptic membranes and microsomes. J Biol Chem 258: 6101–6108, 1983

    Google Scholar 

  24. Mas-Oliva J, Williams A, Nayler WG: ATP-induced stimulation of calcium binding to cardiac sarcolemma. Biochem Biophys Res Comm 87: 441–447, 1979

    Google Scholar 

  25. Mas-Oliva J, de Meis L, Inesi G: Calmodulin stimulates both adenosine 5′-triphosphate hydrolysis and synthesis catalyzed by a cardiac calcium ion dependent adenosine triphosphatase. Biochemistry 22: 5822–5825, 1983

    Google Scholar 

  26. Mas-Oliva J: Synthesis of ATP-catalyzed by the (Ca2+-Mg2+)-ATPase from erythrocyte ghosts. Energy conservation in plasma membranes. Biochim Biophys Acta 812: 163–167, 1985

    Google Scholar 

  27. Gopalakrishna R, Anderson WB: Ca2+-induced hydrophobic site on calmodulin: Application for purification of calmodulin by phenyl-sepharose affinity chromatography. Biochem Biophys Res Commun 104: 830–836, 1982

    Google Scholar 

  28. Smith FD, Walburg FE, Chang PJ: Establishment of a transplantable ascites variant of a rat hepatoma induced by 3′-methyl-4-dimethyl-aminobenzene. Cancer Res 30: 2306–2309, 1970

    Google Scholar 

  29. Church JG, Ghosh SH, Roufogalis BD, Villalobo A: Endogenous hyperphosphorylation in plasma membrane from an ascites hepatocarcinoma cell line. Biochem Cell Biol 66: 1–12, 1988

    Google Scholar 

  30. Neville DM: Isolation of an organ specific protein antigen from cell-surface membrane of rat liver. Biochem Biophys Acta 154: 540–552, 1968

    Google Scholar 

  31. Brown AE, Lok MP, Elovson J: Improved method for the isolation of rat liver plasma membrane. Biochem Biophys Acta 426: 418–432, 1976

    Google Scholar 

  32. Post RL, Sen AK: Sodium and potassium stimulated ATPase. Methods Enzymol X. 762–768, 1967

    Google Scholar 

  33. Evans WH: Properties of 5′nucleotidase purified from mouse liver plasma membranes. Clinical Sciences 58: 439–444, 1980

    Google Scholar 

  34. Veeger C, Der Vastanian DV, Zeylemaker WP: Succinate dehydrogenase. Methods Enzymol XIII 81–90, 1969

    Google Scholar 

  35. Reeves WJ, Fimognari GM: Lactic dehydrogenase. Methods Enzymol IX 288–294, 1967

    Google Scholar 

  36. Lazarow A, Cooperstein SJ: A microspectrophotometric method for the determination of cytochrome oxidase. J Biol Chem 189: 665–670, 1951

    Google Scholar 

  37. Nordlie RC, Arion WJ: Evidence for the common identity of glucose 6-phosphatase, inorganic pyrophosphatase, and pyrophosphate-glucose phosphotransferase. J Biol Chem 239: 1680–1685, 1964

    Google Scholar 

  38. Lowry OH, Rosebrough NJ, Farr AL, Randall R: Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275, 1951

    CAS  PubMed  Google Scholar 

  39. Fiske CH, Subbarow Y: The colorimetric determination of phosphorous. J Biol Chem 66: 375–380, 1925

    Google Scholar 

  40. Sillén LG, Martell AE: Stability constants on metal-ion complexes. Suppl 1 Spec publication 25 The Chemical Society, London, 1971

  41. de Meis L, Martins OB, Alves E: Role of water, hydrogen ion, and temperature on the synthesis of adenosine triphosphate by the sarcoplasmic reticulum adenosine triphospha tase in the abscence of a calcium ion gradient. Biochemistry 19: 4252–4261, 1980

    Google Scholar 

  42. Ikehara Y, Takahashi K, Mansho K, Eto S, Kato K: Contrast manifestation of alkaline phosphatase and 5′nucleotidase in plasma membranes isolated from rat liver and ascites hepatoma. Biochim Biophys Acta 470: 202–211, 1977

    Google Scholar 

  43. Knowles AF, Leng L: Purification of a low affinity Mg2+ (Ca2+)-ATPase from the plasma membranes of a human oat cell carcinoma. J Biol Chem 259: 10919–10924, 1984

    Google Scholar 

  44. Lin SH: Novel ATP-dependent calcium transport component from rat liver plasma membranes. The transporter and the previously reported (Ca2+,Mg2+)-ATPase are different proteins. J Biol Chem 260: 7850–7856, 1985

    Google Scholar 

  45. Lin SH: The rat liver plasma membranes high affinity (Ca2+,Mg2+)-ATPase is not a calcium pump. J Biol Chem 260: 10976–10980, 1985

    Google Scholar 

  46. Schanne FAX, Moore L: Liver plasma membrane calcium transport. Evidence for a Na+-dependent Ca2+-Flux. J Biol Chem 261: 9886–9889, 1986

    Google Scholar 

  47. Schütze S, Sling HD: Does a calmodulin-dependent Ca2+-regulated Mg2+-dependent ATPase contribute to hepatic microsomal calcium uptake. Biochem J 243: 729–737, 1987

    Google Scholar 

  48. Iwasa Y, Iwasa T, Higashi K, Matsui K, Miyamoto E: Demonstration of a high affinity Ca2+-ATPase in rat liver plasma membranes. Biochem Biophys Res Commun 105: 488–494, 1982

    Google Scholar 

  49. Bachs O, Famulski KS, Mirabelli F, Carafoli E: ATP-dependent Ca2+ transport in vesicles isolated from the bile canalicular region of the hepatocyte plasma membrane. Eur J Biochem 147: 1–7, 1985

    Google Scholar 

  50. Chan K, Junger KD: Calcium transport and phosphorylated intermediate of (Ca2+-Mg2+)-ATPase in plasma membranes of rat liver. J Biol Chem 258: 4404–4410, 1983

    Google Scholar 

  51. Lotersztajn S, Hanoune J, Pecker F: A high affinity calcium-stimulated magnesium-dependent ATPase in rat liver plasma membranes. J Biol Chem 256: 11209–11215, 1981

    Google Scholar 

  52. Pecker F, Lotersztajn S: Fell and other divalent metal ions uncouple Ca2+ transport from (Ca2+-Mg2+)-ATPase in rat liver plasma membranes. J Biol Chem 260: 731–735, 1985

    Google Scholar 

  53. Hidalgo C, Petrucci DA, Vergara C: Uncoupling of Ca2+-transport in sarcoplasmic reticulum as a result of labeling lipid groups and inhibition of Ca2+-ATPase activity by modification of lysine residues of the Ca2+-ATPase polypeptide. J Biol Chem 257: 208–216, 1982

    Google Scholar 

  54. Ochs DL, Reed PW: Ca2+-stimulated, Mg2+-dependent ATPase activity in neutrophil plasma membrane vesicles. Coupling to Ca2+-transport. J Biol Chem 259: 102–106, 1984

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the memory of Catalina Mas Oliva and Valentín Mas Morera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mas-Oliva, J., Pérez-Montfort, R., Cárdenas-García, M. et al. Altered coupling states between calcium transport and (Ca2+, Mg2+)-ATPase in the AS-30D Ascites hepatocarcinoma plasma membrane. Mol Cell Biochem 100, 39–50 (1991). https://doi.org/10.1007/BF00230808

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00230808

Key words

Navigation