Skip to main content
Log in

Brain stimulation-induced changes of phonation in the squirrel monkey

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

In 11 squirrel monkeys (Saimiri sciureus), the brain stem was systematically explored with electrical brain stimulation for sites affecting the acoustic structure of ongoing vocalization. Vocalization was elicited by electrical stimulation of different brain structures. A severe deterioration of the acoustical structure of vocalization was obtained during stimulation of the caudoventral part of the periaqueductal grey, lateral parabrachial area, corticobulbar tract, nucl. ambiguus and surrounding reticular formation, facial nucleus, hypoglossal nucleus, solitary tract nucleus and along the fibres crossing the midline at the level of the hypoglossal nucleus. It is suggested that these structures are part of, or at least have direct access to, the motor coordination mechanism of phonation. Complete inhibition of phonation was obtained from the raphe and raphe-near reticular formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ab:

nucl ambiguus

APt:

area praetectalis

BC:

brachium conjunctivum

BP:

brachium pontis

Cb:

cerebellum

CC:

corpus callosum

Cd:

nucl. caudatus

Cf:

nucl. cuneiformis

Cel:

nucl. centralis lateralis

Cl:

claustrum

CM:

centrum medianum

Cn:

nucl. cuneatus

Co:

nucl. cochlearis

CoI:

colliculus inferior

CoS:

colliculus superior

CP:

commissura posterior

CPf:

cortex piriformis

CRf:

corpus restiforme

CSL:

nucl. centralis superior lateralis thalami

CT:

corpus trapezoideum

DBC:

decussatio brachii conjunctivi

DG:

nucl. dorsalis tegmenti (Gudden)

DLM:

decussatio lemnisci medialis

DPy:

decussatio pyramidum

DR:

nucl. dorsalis raphae

DV:

nucl. dorsalis n. vagi

DIV:

decussatio n. trochlearis

EP:

epiphysis

FC:

funiculus cuneatus

FL:

funiculus lateralis

FLM:

fasciculus longitudinalis medialis

FRM:

formatio reticularis myelencephali

FRP:

formatio reticularis pontis

FRPc:

formatio reticularis pontis caudalis

FRPo:

formatio reticularis pontis oralis

FRTM:

formatio reticularis mesencephali

FV:

funiculus ventralis

G:

nucl. gracilis

GC:

substantia grisea centralis (periaqueductal grey)

GL:

nucl. geniculatus lateralis

GM:

nucl. geniculatus medialis

GP:

globus pallidus

GPM:

griseum periventriculare mesencephali

GPo:

griseum pontis

Hip:

hippocampus

HL:

nucl. habenularis lateralis

H:

habenula

IP:

nucl. interpeduncularis

LC:

locus coeruleus

LD:

nucl. lateralis dorsalis thalami

Lim:

nucl. limitans

LLd:

nucl. lemnisci lateralis, pars dorsalis

LLv:

nucl. lemnisci lateralis, pars ventrali

LM:

lemniscus medialis

LP:

nucl. lateralis posterior thalami

MD:

nucl. medialis dorsalis thalami

MV:

nucl. motorius n. trigemini

NCS:

nucl. centralis superior

NCT:

nucl. trapezoidalis

NMV:

nucl. mesencephalicus n. trigemini

NR:

nucl. ruber

NSV:

nucl. spinalisn. trigemini

NTS:

nucl. tractus solitarii

NIII:

nucl. oculomotorius

NIV:

nucl. trochlearis

NVI:

nucl. abducens

NVII:

nucl. facialis

NXII:

nucl. hypoglossus

OI:

oliva inferior

OS:

oliva superior

P:

nucl. posterior thalami

PbL:

nucl. parabrachialis lateralis

PbM:

nucl. parabrachialis medialis

PC:

depedunculus cerebri

Pd:

nucl. peripeduncularis

Pg:

nucl. parabigeminalis

Pp:

nucl. praepositus

PuI:

nucl. pulvinaris inferior

PuL:

nucl. pulvinaris lateralis

PuM:

nucl. pulvinaris medialis

PuO:

nucl. pulvinaris oralis

Py:

tractus pyramidalis

Pv:

nucl. principalis n. trigemini

R Ab:

nucl. retroambiguus

RL:

nucl. reticularis lateralis

RTP:

nucl. reticularis tegmenti pontis

Sf:

nucl. subfascicularis

SGD:

substantia grisea dorsalis

SGV:

substantia grisea ventralis

SN:

substantia nigra

ST:

stria terminalis

St:

subthalamus

TRM:

tractus retroflexus (Meynert)

TSc:

tractus spinocerebellaris

Ves:

nucl. vestibularis

VL:

nucl. ventralis lateralis

VPI:

nucl. ventralis posterior inferior

VPL:

nucl. ventralis posterior lateralis

VPM:

nucl. ventralis posterior medialis

VR:

nucl. ventralis raphae

Zi:

zona incerta

II:

tractus opticus

VII:

n. facialis

References

  • Alajouanine T, Thurel R (1933) La diplegie faciale cerebrale forme corticale de la paralysie pseudobulbaire. Rev Neurol 60: 441–458

    Google Scholar 

  • Barillot JC, Bianchi AL, Gogan P (1984) Laryngeal respiratory motoneurones: morphology and electrophysiological evidence of separate sites for excitatory and inhibitory synaptic inputs. Neurosci Lett 47: 107–112

    Google Scholar 

  • Bauer G, Gerstenbrand F, Hengl W (1980) Involuntary motor phenomena in the locked in syndrome. J Neurol 223: 191–198

    Google Scholar 

  • Beckstead RM, Norgren R (1979) An autoradiographic examination of the central distribution of the trigeminal, facial, glosso pharyngeal, and vagal nerves in the monkey. J Comp Neurol 184: 455–472

    Google Scholar 

  • Bertrand F, Hugelin A (1971) Respiratory synchronizing function of nucleus parabrachialis medialis: pneumotaxic mechanisms. J Neurophysiol 34: 189–207

    Google Scholar 

  • Bertrand F, Hugelin A, Vibert JF (1973) Quantitative study of anatomical distribution of respiration related neurons in the pons. Exp Brain Res 16: 383–399

    Google Scholar 

  • Chai CY, Lin YF, Lin AMY, Pan CM, Lee EMY, Kuo JS(1988) Existence of a powerful inhibitory mechanism in the medial region of caudal medulla with special reference to the paramedian reticular nucleus. Brain Res Bull 20: 515–528

    Google Scholar 

  • Chandler SH, Goldberg LJ (1988) Effects of pontomedullary retic ular formation stimulation on the neuronal networks responsible for rhythmical jaw movements in the guinea pig. J Neurophysiol 59: 819–832

    Google Scholar 

  • Eibl-Eibesfeldt I (1973) The expressive behaviour of the deaf and blind born. In: Cranach M V, Vine J (eds) Social communication and movement. Academic Press, London, pp 163–194

    Google Scholar 

  • Gacek RR (1975) Localization of laryngeal motor neurons in the kitten. Laryngoscope 85: 1841–1860

    Google Scholar 

  • Groswasser Z, Korn C, Groswasser-Reider J, Solzi P (1988) Mutism associated with buccofacial apraxia and bihemispheric lesions. Brain Lang 34: 157–168

    Google Scholar 

  • Hisa Y, Sato F, Fukui K, Ibata Y, Mizuokoshi B (1984) Nucleus ambiguus motoneurons innervating the canine intrinsic laryngeal muscles by the fluorescent labeling technique. Exp Neurol 84: 441–449

    Google Scholar 

  • Holstege G (1989) Anatomical study of the final common pathway for vocalization in the cat. J Comp Neurol 284: 242–252

    Google Scholar 

  • Jürgens U (1976a) Reinforcing concomitants of electrically elicited vocalizations. Exp Brain Res 26: 203–214

    Google Scholar 

  • Jürgens U (1976b) Projections from the cortical larynx area in the squirrel monkey. Exp Brain Res 25: 401–411

    Google Scholar 

  • Jürgens U (1986) The squirrel monkey as an experimental model in the study of cerebral organization of emotional vocal utterances. Eur Arch Psychiat Neurol Sci 236: 40–43

    Google Scholar 

  • Jürgens U, Kirzinger A (1985) The laryngeal sensory pathway and its role in phonation. A brain lesioning study in the squirrel monkey. Exp Brain Res 59: 118–124

    Google Scholar 

  • Jürgens U, Ploog D (1970) Cerebral representation of vocalization in the squirrel monkey. Exp Brain Res 10: 532–554

    Google Scholar 

  • Jürgens U, Hast M, Pratt R (1978) Effects of laryngeal nerve transection on squirrel monkey calls. J Comp Physiol 123: 23–29

    Google Scholar 

  • Jürgens U, Kirzinger A, Cramon, Dv (1982) The effects of deep reaching lesions in the cortical face area on phonation. A combined case report and experimental monkey study. Cortex 18: 125–140

    Google Scholar 

  • Kalia M, Feldman JL, Cohen MJ (1979) Afferent projections to the inspiratory neuronal region of the ventrolateral nucleus of the tractus solitarius in the cat. Brain Res 171: 135–141

    Google Scholar 

  • Kerr FWL (1962) Facial, vagal and glossopharyngeal nerves in the cat. Afferent conections. Arch Neurol (Chicago) 6: 264–281

    Google Scholar 

  • Kirikae J, Hirose H, Kawamura S, Sawashima M, Kobayashi T (1962) An experimental study of central motor innervation of the laryngeal muscles in the cat. Ann Otol Rhinol Laryng (St Louis) 71: 222–241

    Google Scholar 

  • Kirzinger A, Jürgens U (1985) The effects of brain stem lesions on vocalization in the squirrel monkey. Brain Res 358: 150–162

    Google Scholar 

  • Kirzinger A, Jürgens U (1991) Vocalizatio correlated single unit activity in the brain stem of the squirrel monkey. Exp Brain Res 84: 545–560

    Google Scholar 

  • Kreuter F, Richter DW, Camerer H, Senekowitsch R (1977) Morphological and electrical description of medullary respiratory neurons of the cat. Pflügers Arch 372: 7–16

    Google Scholar 

  • Lalley PM (1986) Responses of phrenic motoneurones of the cat to stimulation of medullary raphe nuclei. J Physiol (Lond) 380: 349–371

    Google Scholar 

  • MacLean PD (1967) A chronically fixed stereotaxic device for intracerebral exploration with macro- and micro- electrodes. Electroenceph Clin Neurophysiol 22: 180–182

    Google Scholar 

  • Mariani C, Spinnler H, Sterzi R, Vallar G (1980) Bilateral perisylvian softening: bilateral anterior opercular syndrome (Foix-Chavany-Marie syndrome). J Neurol 223: 269–284

    Google Scholar 

  • McClean MD, Dostrovsky JO, Lee L, Tasker RR (1990) Somatosensory neurons in human thalamus respond to speech induced orofacial movements. Brain Res 513: 343–347

    Google Scholar 

  • Mori S, Nishimura M, Kurakami N, Yamamura O, Aoki M (1978) Controlled locomotion in the mesencephalic cat: distribution of facilitatory and inhibitory regions within pontine tegmentum. J Neurophysiol 41: 1580–1591

    Google Scholar 

  • Pásaro R, Lobera B, González-Barón S, Delgado-Garcia JM (1983) Cytoarchitectonic organization of laryngeal motoneurons with in the nucleus ambiguus of the cat. Exp Neurol 82: 623–634

    Google Scholar 

  • Rübsamen R, Schweizer H (1986) Control of echolocation pulses by neurons of the nucleus ambiguus in the rufous horseshoe bat, Rhinolophus rouxi. J Comp Physiol A 159: 689–699

    Google Scholar 

  • Schweizer M, Rübsamen R, Rühle N (1981) Localization of brain stem motoneurons innervating the laryngeal muscles in the rufous horseshoe bat, Rhinolophus rouxi. Brain Res 230: 41–50

    Google Scholar 

  • Sessle BJ, Ball GJ, Lucier GE (1981) Suppressive influences from periaqueductal gray and nucleus raphe magnus on respiration and related reflex activities and on solitary tract neurons, and effect of naloxone. Brain Res 216: 145–161

    Google Scholar 

  • Smith JC, Morrison DE, Ellenberger HH, Otto MR, Feldman, JL (1989) Brainstem projections to the major respiratory neuron populations in the medulla of the cat. J Comp Neurol 281: 69–96

    Google Scholar 

  • Thorns G, Jürgens U (1987) Common input of the cranial motor nuclei involved in phonation in squirrel monkey. Exp Neurol 95: 85–99

    Google Scholar 

  • Torvik A (1956) Afferent connections to the sensory trigeminal nuclei, the nucleus of the solitary tract and adjacent structures. An experimental study in the rat. J Comp Neurol 106: 51–141

    Google Scholar 

  • Winter P, Handley P, Ploog D, Schott D (1973) Ontogeny of squirrel monkey calls under normal conditions and under acoustic isolation. Behaviour 47: 230–239

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dressnandt, J., Jürgens, U. Brain stimulation-induced changes of phonation in the squirrel monkey. Exp Brain Res 89, 549–559 (1992). https://doi.org/10.1007/BF00229880

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00229880

Key words

Navigation