Skip to main content
Log in

Postischaemic changes in protein synthesis in the rat brain: effects of hypothermia

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Protein synthesis, measured as [14C]-leucine incorporation into proteins, was studied in the normothermic rat brain following 15 min of transient cerebral ischaemia and 1 h, 24 h and 48 h of recirculation, and in the hypothermic (33°C) brain following 1 h and 48 h of recirculation. Ischaemia was induced by bilateral common carotid occlusion combined with hypotension. Following normothermic ischaemia, incorporation of [14C]-leucine was depressed by 40–80% at 1 h of recirculation in all brain regions studied. At 48 h postischaemia, incorporation returned to normal or above normal levels in the inner layers of neocortex, the CA3 region, the striatum and the dentate gyrus, while in the outer layers of neocortex and in the hippocampal CA1 region the incorporation was persistently decreased by 26% and 40% respectively. At 24 and 48 h postischaemia, protein synthesis in the CA1 region and the striatum could be attributed to proliferating microglia. Intra-ischaemic hypothermia ameliorated the persistent depression of protein synthesis in the CA1 region at 48 h postischaemia, and a two-fold increase compared to the normothermic group was observed both in the CA1 region and the striatum. In the cortex, eucaryotic initiation factor 2 activity transiently decreased at 30 min postischaemia. In animals subjected to intra-ischaemic hypothermia, the eucaryotic initiation factor 2 activity was reduced by 50% of control at 30 min of recirculation compared with 77% in normothermic animals. We conclude that the postischaemic depression of protein synthesis is in part caused by a decrease in eucaryotic initiation factor 2 activity. The early postischaemic depression may reflect a reaction of the tissue to stress, while the late persistent depression, which is normalised by intra-ischaemic hypothermia, may be related to the mechanism of cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aizenman Y, DeVellis J (1987) Brain neurons develop in a serum and glial free environment: effects of transferrin, insulin, insulinlike growth factor I and thyroid hormone on neuronal survival, growth and differentiation. Brain Res 406:32–42

    Article  CAS  PubMed  Google Scholar 

  • Andersson P-B, Perry VH, Gordon S (1991) The kinetics and morphological characterisics of the macrophage-microglial response to kainic acid induced neuronal degeneration. Neuroscience 42:201–214

    Google Scholar 

  • Araki T, Kato H, Inoue T, Kogure K (1990) Regional impairment of protein synthesis following brief cerebral ischemia in the gerbil. Acta Neuropathol (Berl) 79:501–505

    Google Scholar 

  • Auer RN, Olsson Y, Siesjö BK (1984) Hypoglycemic brain injury in the rat. Correlation of density of brain damage with the EEG isoelectric time: a quantitative study. Diabetes 33:1090–1098

    Google Scholar 

  • Bodsch W, Takahashi K, Barbier A, Grosse Ophoff B, Hossmann K-A (1985) Cerebral protein synthesis and ischemia. Prog Brain Res 63:237–259

    Google Scholar 

  • Bodsch W, Barbier A, Oehmichen M, Grosse Ophoff B, Hossmann K-A (1986) Recovery of monkey brain after prolonged ischemia. II. Protein synthesis and morphological alteration. J Cereb Blood Flow Metab 6:22–33

    Google Scholar 

  • Boris-Möller F, Smith M-L, Siesjö BK (1989) Effects of hypothermia on ischemic brain damage: a comparison between preischemic and postischemic cooling. Neurosci Res Com 5:87–94

    Google Scholar 

  • Boyd RS, Conolly JE (1961) Tolerance of anoxia of the dog's brain at various temperatures. Surg Forum 12:408–440

    Google Scholar 

  • Brierley JB (1976) Cerebral hypoxia. In: Adams JH, Corsellis JAN, Duchen LW (eds) Greenfield's neuropathology. Arnold, London, pp 43–85

    Google Scholar 

  • Busto R, Dietrich WD, Globus MY-T, Valdés I, Scheinberg P, Ginsberg M (1987) Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab 7:729–738

    Google Scholar 

  • Busto R, Globus MY-T, Dietrich WD, Martinez E, Valdés I, Ginsberg M (1989) Effect of mild hypothermia on ischemia induced release of neurotransmitters and free fatty acids in the rat brain. Stroke 7:904–910

    Google Scholar 

  • Cardell M, Boris-Möller F, Wieloch T (1991) Hypothermia prevents the ischemia-induced translocation and inhibition of protein kinase C in the rat striatum. J Neurochem 57:1814–1819

    Google Scholar 

  • Choi DW (1988a) Calcium mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 11:465–469

    Google Scholar 

  • Choi DW (1988b) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–634

    CAS  PubMed  Google Scholar 

  • Churn SB, Taft WC, Billingsley ML, Blair RE, DeLorenzo RJ (1990) Temperature modulation of ischemia-induced neuronal cell death and ischemia-induced inhibition of calcium/calmodulin-dependent protein kinase II in gerbils. Stroke 21:1715–1721

    Google Scholar 

  • Cooper HK, Zalewska T, Kawakami S, Hossmann K-A, Kleihues P (1977) The effect of ischemia and recirculation on protein synthesis in the rat brain. J Neurochem 28:929–934

    Google Scholar 

  • Deshpande J, Bergstedt K, Linden T, Kalimo H, Wieloch T (1992) Ultrastructural changes in the hippocampal CA1 region following transient cerebral ischemia. Evidence against programmedcell death. Exp Brain Res 88:91–105

    Google Scholar 

  • Diemer NH, Baichen T, Hu P, Frank L, Bruhn T, Berg M, Christensen T, Jørgensen MB, Johansen FF (1992) The effect of AMPA antagonists on the regional neuron loss after cerebral ischemia in the rat. In: Kriegelstein J, Oberpichler-Schwenk H (eds) Pharmacology of cerebral ischemia. Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, pp 121–127

    Google Scholar 

  • Francis A, Pulsinelli WA (1982) The responce of GABAergic and chloinergic neurons to transient cerebral ischemia. Brain Res 243:271–278

    Google Scholar 

  • Frank L, Bruhn T, Diemer N-H (1992) Regional cerebral protein synthesis after transient ischemia in the rat: effect of the AMPA antagonist NBQX. Neurosci Lett 140:108–112

    Google Scholar 

  • Heidenreich KA, Toledo SP (1989) Insulin receptors mediate growth effects in cultured neurons. I. Rapid stimulation of protein synthesis. Endocrinology 125:1451–1457

    CAS  PubMed  Google Scholar 

  • Hershey JWB (1991) Translation control in mammalian cells. Ann Rev Biochem 60:717–755

    Google Scholar 

  • Hirsch H, Müller HA (1962) Funktionelle und histologische Veränderungen des kanin-chengehirns nach kompletter Gehirnischämie. Pflugers Arch 271:277–291

    Google Scholar 

  • HuB-R, WielochT (1993) Stress induced inhibition of protein synthesis initiation. Modulation of initiation factor-2 and guanine nucleotide exchange factor activities following transient cerebral ischemia in the rat. J Neurosci (in press)

  • Ito U, Spatz M, Walker JT, Klatzo J (1975) Experimental cerebral ischemia in mongolian gerbils. I. Light microscopic observations. Acta Neuropathol 32:209–223

    Google Scholar 

  • Johansen FF, Diemer NH (1990) Temporal profile of interneuron and pyramidal cell protein synthesis in rat hippocampus following cerebral ischemia. Acta Neuropathol 81:14–19

    Google Scholar 

  • Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:67–69

    Google Scholar 

  • Lindroth P, Mopper K (1979) High performance liquid chromatographic determination of subpicomole amounts of aminoacids by precolumn fluorescence derivatization with ophthaldialdehyde. Anal Chem 52:1667–1674

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin reagent. J Biol Chem 193:265–272

    CAS  PubMed  Google Scholar 

  • Minamisawa H, Nordström C-H, Smith M-L, Siesjö BK (1990) The influence of mild body and brain hypothermia on ischemic brain damage. J Cereb Blood Flow Metab 10:365–374

    Google Scholar 

  • Miyauchi Y, Wieloch T, Lindvall O (1989) Noradrenaline metabolism in neocortex and hippocampus following transient forebrain ischemia in rats: relation to development of selective neuronal necrosis. J Neurochem 53:408–415

    Google Scholar 

  • Morley S, Thomas G (1991) Intracellular messengers and the control of protein synthesis. Pharmac Ther 50:291–319

    Google Scholar 

  • Munekata K, Hossmann K-A, Xie Y, Seo K, Oschlies U (1987) Selective vulnerability of hippocampus: ribosomal aggregation, protein synthesis, and tissue pH. In: Raichle ME, Powers WJ (eds) Cerebrovascular disease. Raven Press, New York, pp 107–117

    Google Scholar 

  • Nellgård B, Wieloch T (1992) Postischemic blockade of AMPA but not NMDA receptors mitigates neuronal damage in the rat brain following transient severe cerebral ischemia. J Cereb Blood Flow Metab 12:2–11

    Google Scholar 

  • Nygård O, Nilsson L (1990) Translational dynamics. Eur J Biochem 191:1–17

    Google Scholar 

  • Ochoa S (1983) Regulation of protein synthesis initiation in eucaryotes. Arch Biochem Biophys 223:325–349

    Google Scholar 

  • Pain VM (1986) Initiation of protein synthesis in mammalian cells. Biochem J 235:625–637

    Google Scholar 

  • Petito CK, Pulsinelli WA (1984) Delayed neuronal recovery and neuronal death in the rat hippocampus following severe cerebral ischemia: possible relationship to abnormalities in neuronal processes. J Cereb Blood Flow Metab 4:194–205

    Google Scholar 

  • Petito C, Feldmann E, Pulsinelli W, Plum F (1987) Delayed hippocampal damage in humans following cardiac arrest. Neurology 37:1282–1286

    Google Scholar 

  • Pontén U, Ratcheson RA, Salford L, Siesjö BK (1973) Optimal freezing conditions for cerebral metabolites in rats. J Neurochem 21:1127–1138

    Google Scholar 

  • Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11:491–499

    Google Scholar 

  • Rhoads RE (1991) Protein synthesis, cell growth and oncogenesis. Curr Opin Cell Biol 3:1019–1024

    Google Scholar 

  • Scorsone KA, Panniers R, Rowlands AG, Henshaw EC (1987) Phosphorylation of eucaryotic initiation factor 2 during physiological stresses which affect protein synthesis. J Biol Chem 262:14538–14543

    Google Scholar 

  • Sheardown MJ, Nielsen E, Hansen AJ, Jacobsen P, Honoré T (1990) 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline: a neu-roprotectant for cerebral ischemia. Science 247:571–574

    Google Scholar 

  • Shigeno T, Mima T, Takakura K, Graham DI, Kato G, Hashimoto Y, Furukawa S (1991) Amelioration of delayed neuronal death in the hippocampus by nerve growth factor. J Neurosci 11:2414–2419

    Google Scholar 

  • Siesjö BK (1985) Acid-base homeostasis in the brain: physiology, chemistry, and neurochemical pathology. In: Kogure K, Hossmann K-A, Siesjö BK, Welsh FA. Prog Brain Res 63:121–154

  • Siesjö BK (1988) Mechanisms of ischemic brain damage. Crit Care Med 16:954–963

    Google Scholar 

  • Smith K, Henshaw E (1975) Binding of Met-tRNAf to native and derived 40S ribosomal subunits. Biochem 14:1060–1067

    Google Scholar 

  • Smith M-L, Bendek G, Dahlgren N, Rosen I, Wieloch T, Siesjö BK (1984) Models for studying long-term recovery following forebrain ischemia in the rat. A 2-vessel occlusion model. Acta Neurol Scand 69:385–401

    Google Scholar 

  • Surmacz, Kaczmarek L Rnning O, Baserga R (1987) Activation of the ribosomal DNA promoter in cells exposed to insulin-like growth factor I. Mol Cell Biol 7:657–663

    Google Scholar 

  • Thilmann R, Xie Y, Kleihaus P, Kiessling M (1986) Persistent inhibition of protein synthesis precedes delayed neuronal death in postischemic gerbil hippocampus. Acta Neuropathol 71:88–93

    Google Scholar 

  • Widmann R, Kuroiwa T, Bonnekoh P, Hossmann K-A (1991) [14C]leucine incorporation into brain proteins in gerbils after transient ischemia: relationship to selective vulnerability of hippocampus. J Neurochem 56:789–796

    Google Scholar 

  • Widmann R, Weber P, Bonnekoh P, Schlenker M, Hossmann K-A (1992) Neuronal damage after repeated 5 minutes of ischemia in the gerbil is preceded by prolonged impairment of protein metabolism. J Cereb Blood Flow Metab 12:425–433

    Google Scholar 

  • Wieloch T, Cardell M, Bingren H, Zivin J, Saitoh T (1991) Changes in the activity of protein kinase C and the differential subcellular redistribution of its isozymes in the rat striatum during and following transient forebrain ischemia. J Neurochem 56:1227–1235

    Google Scholar 

  • Wong ST, Mastropaolo W, Henshaw EC (1982) Differential; phosphorylation of soluble versus ribosome-bound eucaryotic initiation factor 2 in the ehrlich ascites tumor cell. J Biol Chem 257:5231–5238

    Google Scholar 

  • Yoshimine T, Hayakawa T, Kato A, Matsumoto K, Ushio Y, Mogami H (1987) Auto-radiographic study of regional protein synthesis in focal cerebral ischemia with TCA wash and image subtraction techniques. J Cereb Blood Flow Metab 7:387–393

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergstedt, K., Hu, B.R. & Wieloch, T. Postischaemic changes in protein synthesis in the rat brain: effects of hypothermia. Exp Brain Res 95, 91–99 (1993). https://doi.org/10.1007/BF00229658

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00229658

Key words

Navigation