Skip to main content
Log in

Calcium binding proteins in the sarcoplasmic/endoplasmic reticulum of muscle and nonmuscle cells

  • Review
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In this paper we review some of the large quantities of information currently available concerning the identification, structure and function of Ca2+-binding proteins of endoplasmic and sarcoplasmic reticulum membranes. The review places particular emphasis on identification and discussion of Ca2+ ‘storage’ proteins in these membranes. We believe that the evidence reviewed here supports the contention that the Ca2+-binding capacity of both calsequestrin and calreticulin favor their contribution as the major Ca2+-binding proteins of muscle and nonmuscle cells, respectively. Other Ca2+-binding proteins discovered in both endoplasmic reticulum and sarcoplasmic reticulum membranes probably contribute to the overall Ca2+ storage capacity of these membrane organelles, and they also play other important functional role such as posttranslational modification of newly synthesized proteins, a cytoskeletal (structural) function, or movement of Ca2+ within the lumen of the sarcoplasmic/endoplasmic reticulum towards the storage sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SR:

Sarcoplasmic Reticulum

ER:

Endoplasmic Reticulum

InsP3 :

Inositol 1,4,5-trisphosphate

SDS-PAGE:

Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis

PDI:

Protein Disulphide Isomerase

T3BP:

Thyroid Hormone Binding Protein

Grp:

Glucose regulated proteins

HCP:

Histidine-rich Ca2+ binding Protein

LDL:

Low Density Lipoprotein

References

  1. Carafoli E: Intracellular calcium homeostasis. Annu Rev Biochem 56: 395–433, 1987

    Google Scholar 

  2. Berridge MJ: Calcium oscillations. J Biol Chem 265: 9585–9586, 1990

    Google Scholar 

  3. Fleischer S, Inui M: Biochemistry and biophysics of excitation-contraction coupling. Annu Rev Biophys Chem 18: 333–343, 1989

    Google Scholar 

  4. Samlyo AP, Himpens B: Cell calcium and its regulation in smooth muscle. FASEB J 3: 226–2276, 1989

    Google Scholar 

  5. van Breeman C, Saido K: Cellular mechanisms regulation [Ca+]i smooth muscle. Annu Rev Physiol 51: 315–329, 1989

    Google Scholar 

  6. Walz B, Baumann O: Calcium-sequestering cell organelles: in situ localization, morphological and functional characterization. Topics Histochem Cytochem 20: 1–45, 1989

    Google Scholar 

  7. MacLennan DH, Campbell KP, Reithmeier RAF: Calsequestrin. In: Calcium and Cell Function 4: 151–173, 1983

    Google Scholar 

  8. Michalak M, Campbell KP, MacLennan DH: Localization of the high affinity calcium binding protein and an intrinsic glycoprotein in sarcoplasmic reticulum membranes. J Biol Chem 255: 1317–1326, 1980

    Google Scholar 

  9. Fliegel L, Ohnishi M, Carpenter MR, Khanna VK, Reithmeier RAF, MacLennan DH: Amino acid sequence of rabbit fast-twitch skeletal muscle calsequestrin deduced from cDNA and peptide sequencing. Proc Natl Acad Sci USA 84: 1167–1171, 1987

    Google Scholar 

  10. Cala SE, Scott BT, Jones LR: Intralumenal sarcoplasmic reticulum Ca2+-binding proteins. Sem Cell Biol 1: 265–275, 1990

    Google Scholar 

  11. Damiani E, Spamer C, Heilmann C, Salvatory S, Margreth A: Endoplasmic reticulum of rat liver contains two proteins closely related to skeletal sarcoplasmic reticulum Ca-ATPase and calsequestrin. J Biol Chem 263: 340–343, 1988

    Google Scholar 

  12. Hashimoto S, Bruno B, Lew DP, Pozzan T, Volpe P, Meldolesi J: Immunocytochemistry of calciosomes in liver and pancreas. J Cell Biol 107: 2523–2531, 1988

    Google Scholar 

  13. Krause K-H, Pittet D, Volpe P, Pozzan T, Meldolesi J, Lew DP: Calciosome, a sarcoplasmic reticulum-like organelle involved in intracellular Ca2+-handling by nonmuscle cells: studies in human neutrophils and HL-60 cells. Cell Calcium 10: 351–361, 1989

    Google Scholar 

  14. Milner RE, Baksh S, Shemanko C, Carpenter MR, Smillie L, Vance JE, Opas M, Michalak M: Calreticulin, and not calsequestrin, is the major calcium binding protein of smooth muscle sarcoplasmic reticulum and liver endoplasmic reticulum. J Biol Chem 266: 7155–7165, 1991

    Google Scholar 

  15. Koch GLE, Smith MJ, Macer DRJ, Booth C, Wooding FBP: Structure and assembly of the endoplasmic reticulum. Biochem Soc Trans 17: 328–331, 1989

    Google Scholar 

  16. Meldolesi J, Madeddu L, Pozzan T: Intracellular Ca2+ storage organelles in nonmuscle cells: heterogeneity and functional assignment. Biochim Biophys Acta 1055: 130–140, 1990

    Google Scholar 

  17. Koch GLE: The endoplasmic reticulum and calcium storage. BioEssays 12: 527–531, 1990

    Google Scholar 

  18. Tsien RW, Tsien RY: Calcium channels, stores, and oscillations. Annu Rev Cell Biol 6: 715–760, 1990

    Google Scholar 

  19. Pietrobon D, Di Virgilio F, Pozzan T: Structural and functional aspects of calcium homeostasis in eukaryotic cells. Eur J Biochem 193: 599–622, 1990

    Google Scholar 

  20. MacLennan DH: Molecular tools to elucidate problems in excitation-contraction coupling. Biophys J 58: 1355–1365, 1990

    Google Scholar 

  21. Sulakhe PV, St. Louis PJ: Passive and active calcium fluxes across plasma membranes. Prog Biophys Mol Biol 35: 135–195, 1980

    Google Scholar 

  22. Aaron BMB, Oikawa K, Reithmeier RAF, Sykes BD: Characterization of the skeletal muscle calsequestrin by 1H NMR spectroscopy. J Biol Chem 259: 11876–11881, 1984

    Google Scholar 

  23. Cozens B, Reithmeier RAF: Size and shape of rabbit skeletal muscle calsequestrin. J Biol Chem 259: 6248–6252, 1984

    Google Scholar 

  24. Slupsky JR, Ohnishi M, Carpenter MR, Reithmeier RAF: Characterization of cardiac calsequestrin. Biochemistry 26: 6539–6544, 1987

    Google Scholar 

  25. Ohnishi M, Reithmeier RAF: Fragmentation of rabbit skeletal muscle calsequestrin: spectral and ion binding properties of the carboxyl-terminal region. Biochemistry 26: 7458–7465, 1987

    Google Scholar 

  26. Mitchell RD, Simmerman HKB, Jones LR: Ca2+ binding effects protein of canine cardiac calsequestrin. J Biol Chem 263: 1376–1381, 1988

    Google Scholar 

  27. Maurer A, Tanaka M, Ozawa T, Fleischer S: Purification and crystallization of the calcium binding protein of sarcoplasmic reticulum from skeletal muscle. Proc Natl Acad Sci USA 82: 4036–4040, 1985

    Google Scholar 

  28. Williams RW, Beeler TJ: Secondary structure of calsequestrin in solutions and in crystals as determined by Raman spectroscopy. J Biol Chem 261: 12408–12413, 1986

    Google Scholar 

  29. Cala SE, Jones LR: Rapid purification of calsequestrin from cardiac and skeletal muscle sarcoplasmic reticulum vesicles by Ca2+-dependent elution from phenyl-Sepharose. J Biol Chem 258: 11932–11936, 1983

    Google Scholar 

  30. Jones LR, Besch Jr HR, Fleming JW, McConnaughey MM, Watanabe M: Separation of vesicles of cardiac sarcolemma from vesicles of cardiac sarcoplasmic reticulum. Comparative bio chemical analysis of component activities. J Biol Chem 254: 530–539, 1979

    Google Scholar 

  31. Campbell KP, MacLennan DH, Jorgensen AO: Staining of the Ca2+-binding proteins, calsequestrin, calmodulin, troponin C, and S-100, with the cationic carbocyanine dye ‘Stains-All’. J Biol Chem 258: 11267–11273, 1983

    Google Scholar 

  32. Franzini-Armstrong C, Kenney LJ, Varriano-Marston E: The structure of calsequestrin in triads of vertebrate skeletal muscle: a deep-etch study. J Cell Biol 105: 49–56, 1987

    Google Scholar 

  33. Collins JH, Tarcsafalvi A, Ikemoto N: Identification of a region of calsequestrin that binds to the junctional face membrane of sarcoplasmic reticulum. Biochem Biophys Res Commun 167: 189–193, 1990

    Google Scholar 

  34. Ikemoto N, Ronjat M, Meszaros LG, Koshita M: Postulated role of calsequestrin in the regulation of calcium release from sarcoplasmic reticulum. Biochemistry 28: 6764–6771, 1989

    Google Scholar 

  35. Damiani E, Margreth A: Specific protein-protein interactions of calsequestrin with junctional sarcoplasmic reticulum of skeletal muscle. Biochem Biophys Res Commun 172: 1253–1259, 1990

    Google Scholar 

  36. Campbell KP, Knudson CM, Imagawa T, Leung AT, Sutko JL: Identification and characterization of the high affinity [3H] ryanodine receptor of the junctional sarcoplasmic reticulum. J Biol Chem 262: 6460–6463, 1987

    Google Scholar 

  37. Inui M, Saito A, Fleischer S: Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle. J Biol Chem 262: 1740–1747, 1987

    Google Scholar 

  38. Lai FA, Erickson HP, Rousseau E, Liu Q-Y, Meissner G: Purification and reconstitution of the calcium release channel from skeletal muscle. Nature 331: 315–319, 1988

    Google Scholar 

  39. Rardon DP, Cefali DC, Mitchell RD, Seiler SM, Jones LR: High molecular weight proteins purified from cardiac junctional sarcoplasmic reticulum vesicles are ryanodine-sensitive calcium channels. Circ Res 64: 779–789, 1989

    Google Scholar 

  40. Smith JS, Imagawa T, Ma J, Fill M, Campbell KP, Coronado R: Purified ryanodine receptor from rabbit skeletal muscle is the Ca2+-release channel of sarcoplasmic reticulum. J Gen Physiol 92: 1–26, 1988

    Google Scholar 

  41. Penner R, Neher E, Takesima H, Nishimura S, Numa S: Functional expression of the calcium release channel from skeletal muscle ryanodine receptor cDNA. FEBS Lett. 259: 391–398, 1991

    Google Scholar 

  42. Zorzato F, Fujii J, Otsu K, Phillips M, Green NM, Lai FA, Meissner G, MacLennan DH: Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. J Biol Chem 265: 2244–2256, 1990

    Google Scholar 

  43. Otsu K, Willard HF, Khanna VJ, Zorzato F, Green NM, MacLennan DH: Molecular cloning of cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum. J Biol Chem 265: 13472–13483, 1990

    Google Scholar 

  44. Takeshima H, Nishimura S, Matsumoto T, Ishiada H, Kangawa K, Minamino N, Matsuo H, Ueda M, Hanaoka M, Hirose T, Numa S: Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339: 439–445, 1987

    Google Scholar 

  45. Cala SE, Jones LR: Phosphorylation of cardiac and skeletal muscle calsequestrin isoforms by casein kinase II. J Biol Chem 266: 391–398, 1991

    Google Scholar 

  46. Thomas K, Navarro J, Benson RJJ, Campbell KP, Rotundo RL, Fine RE: Newly synthesized calsequestrin, destined for the sarcoplasmic reticulum, is contained in early/intermediate Golgi derived clathrin-coated vesicles. J Biol Chem 264: 3140–3145, 1989

    Google Scholar 

  47. Fliegel L, Ohnishi M, Carpenter MR, Khanna VK, Reithmeier RAF, MacLennan DH: Amino acid sequence of rabbit fast-twitch skeletal muscle calsequestrin deduced from cDNA and peptide sequencing. Proc Natl Acad Sci USA 84: 1167–1171, 1987

    Google Scholar 

  48. Scott BT, Simmerman HKB, Collins JH, Nadal-Ginard B, Jones LR: Complete amino acid sequence of canine cardiac calsequestrin deduced by cDNA cloning. J Biol Chem 263: 8958–8964, 1988

    Google Scholar 

  49. Leberer E, Timms BG, Campbell KP, MacLennan DH: Purification, calcium binding properties, and ultrastructural localization of the 53,000- and 160,000 (sarcalumenin)-dalton gly coproteins of the sarcoplasmic reticulum. J Biol Chem 265: 10118–10124, 1990

    Google Scholar 

  50. Ostwald TJ, MacLennan DH: Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. J Biol Chem 249: 974–979, 1974

    Google Scholar 

  51. Hofmann SL, Goldstein JL, Orth K, Moomaw CR, Slaughter CA, Brown MS: Molecular cloning of a histidine-rich Ca2+-binding protein of sarcoplasmic reticulum that contains highly conserved repeated elements. J Biol Chem 264: 18083–18090, 1989

    Google Scholar 

  52. Hofmann SL, Brown MS, Lee E, Pathak RK, Anderson RGW, Goldstein JL: Purification of a sarcoplasmic reticulum protein that binds Ca2+ and plasma lipoproteins. J Biol Chem 264: 8260–8270, 1989

    Google Scholar 

  53. Hofmann SL, Topham M, Hsieh CL, Francke U: cDNA and genomic cloning of HPC, a human sarcoplasmic reticulum protein, and localization of the gene to human chromosome 19 and mouse chromosome 7. Genomics 9: 656–669, 1991

    Google Scholar 

  54. Cala SE, Jones LR: Purification and identification of endoplasmin (Grp94) from canine cardiac sarcoplasmic reticulum (SR). Biophys J 59: 249a, 1991

  55. Fliegel L, Newton E, Burns K, Michalak M: Molecular cloning of cDNA encoding a 55-kDa multifunctional thyroid hormone binding protein of skeletal muscle sarcoplasmic reticulum. J Biol Chem 265: 15496–15502, 1990

    Google Scholar 

  56. Fliegel L, Burns K, Opas M, Michalak M: The high affinity calcium binding protein of skeletal muscle sarcoplasmic reticulum. Biochem Biophys Acta 982: 1–8, 1989

    Google Scholar 

  57. Mahoney L, Jones LR: Developmental changes in cardiac sarcoplasmic reticulum in sheep. J Biol Chem 261: 15257–15265, 1986

    Google Scholar 

  58. Leberer E, Charuk JHM, Green NM, MacLennan DH: Molecular cloning and expression of cDNA encoding a lumenal calcium binding glycoprotein from sarcoplasmic reticulum. Proc Natl Acad Sci USA 86: 6047–6051, 1989

    Google Scholar 

  59. Leberer E, Charuk JHM, Clarke DM, Green NM, Zubrzycka-Gaarn E, MacLennan DH: Molecular cloning and expression of cDNA encoding the 53,000-Dalton glycoprotein of rabbits skeletal muscle sarcoplasmic reticulum. J Biol Chem 264: 3484–3493, 1989

    Google Scholar 

  60. Fliegel L, Burns K, MacLennan DH, Reithmeier RAF, Michalak M: Molecular cloning of the high affinity calcium binding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum. J Biol Chem 264: 21522–21528, 1989

    Google Scholar 

  61. Fliegel L, Burns K, Wlasichuk K, Michalak M: Peripheral membrane proteins of sarcoplasmic and endoplasmic reticulum. Comparison of carboxyl-terminal amino acid sequences. Biochem Cell Biol 67: 696–702, 1989

    Google Scholar 

  62. Smith MJ, Koch GLE: Multiple zones in the sequence of calreticulin (CRP55, calregulin, HACBP), a major calcium binding ER/SR protein. EMBO J 8: 3581–3586, 1989

    Google Scholar 

  63. McCauliffe DP, Zappi E, Lieu TS, Michalak M, Sontheimer RD, Capra JD: A human Ro/SS-A autoantigen is the homologue of calreticulin and is highly homologous with Onchocercal RAL-1 antigen and an Aplysia ‘memory molecule’. J Clin Invest 86:332–335, 1990

    Google Scholar 

  64. Waisman DM, Salimath BP, Anderson MJ: Isolation and characterization of CAB-63, a novel calcium-binding protein. J Biol Chem 260: 1652–1660, 1985

    Google Scholar 

  65. Sorger PK, Pelham HRB: The glucose regulated protein Grp94 is related to the heat shock protein hsp90. J Mol Biol 194: 341–344, 1988

    Google Scholar 

  66. Koch GLE, Smith M, Macer D, Webster P, Mortara R: Endoplasmic reticulum contains a common, abundant calcium-binding glycoprotein, endoplasmin. J Cell Sci 86: 217–232, 1986

    Google Scholar 

  67. Edman JC, Ellies L, Blacker RW, Roth RA, Rutter WJ: Sequence of protein disulphide isomerase and implications of its relationship to thioredoxin. Nature 317: 267–270, 1985

    Google Scholar 

  68. Pihlajaniemi T, Helaakoski T, Tasanen K, Myllyla R, Huhtala ML, Koivu J, Kivirikko KI: tMolecular cloning of the β-subunit of human prolyl 4-hydroxylase. This subunit and protein disulphide isomerase are products of the same gene. EMBO J 6: 643–649

  69. Geetha-Habbib M, Noiva R, Kaplan HA, Lennarz WJ: Glycosylation site binding protein, a component of oligosaccharyl transferase, is highly similar to three other 57 kd lumenal proteins of the ER. Cell 54: 1053–1060, 1988

    Google Scholar 

  70. Pelham HRB: Control of protein exit from the endoplasmic reticulum. Annu Rev Cell Biol 5: 1–23, 1989

    Google Scholar 

  71. Vaux D, Tooze J, Fuller S: Identification by anti-idiotype antibodies of an intracellular membrane protein that recognizes a mammalian endoplasmic reticulum retention signal. Nature 345: 495–502, 1990

    Google Scholar 

  72. Volpe P, Krause K-H, Hashimoto S, Zorzato F, Pozzan T, Meldolesi J, Lew DP: ‘Calciosome’, a cytoplasmic organelle: the inositol 1,4,5-trisphophate-sensitive Ca2+ store of nonmuscle cells? Proc Natl Acad Sci USA 85: 1091–1095, 1988

    Google Scholar 

  73. Michalak M, Baksh S, Opas M: Identification and immunolocalization of calreticulin in pancreatic cells: no evidence for ‘calcio-somes’. Exp Cell Res 179: 91–99, 1991

    Google Scholar 

  74. Opas M, Dziak E, Fliegel L, Michalak M: Regulation of expression and intracellular distribution of calreticulin, a major calcium binding protein of nonmuscle cells. J Cell Physiol 149: 160–171, 1991

    Google Scholar 

  75. Van PN, Peter F, Söling H-D: Four intracisternal calcium-binding glycoproteins from rat liver microsomes with high affinity for calcium. J Biol Chem 264: 17494–17501, 1989

    Google Scholar 

  76. Rossier MF, Bird GSJ, Putney Jr JW: Subcellular distribution of the calcium-storing inositol 1,4,5-trisphosphate-sensitive organelle in rat liver. Biochem J 274: 643–650, 1991

    Google Scholar 

  77. Baksh S, Michalak M: Expression of calreticulin in Escherichia coli and identification of its Caz+ binding domains. J Biol Chem 266: 21458–21465, 1991

    Google Scholar 

  78. Ostwald TJ, MacLennan DH, Dorrington KJ: Effects of cation binding on the conformation of calsequestrin and the high affinity calcium-binding protein of sarcoplasmic reticulum. J Biol Chem 249: 5867–5871, 1974

    Google Scholar 

  79. Krause K-H, Simmerman HKB, Jones LR, Campbell KP: Sequence similarity of calreticulin with a Ca2+-binding protein that co-purifies with an Ins(1,4,5)P3-sensitive Ca2+ store in HL-60 cells. Biochem J 270: 545–548, 1990

    Google Scholar 

  80. Khanna NC, Tokuda M, Waisman DM: Conformational changes induced by binding of divalent cations to calregulin. J Biol Chem 261: 8883–8887, 1986

    Google Scholar 

  81. Murthy KK, Banville D, Srikant CB, Carrier F, Holmes C, Bell A, Patel YC: Structural homology between the rat calreticulin gene product and the Onchocerca volvulus antigen Ral-1. Nuc Acid Res 18: 4933, 1990

    Google Scholar 

  82. McCauliffe DP, Lux F, Liu TS, San I, Hanke J, Newkirk MM, Bachinski LL, Itch Y, Sicilino MJ, Reichlin M, Sontheimer RD, Capra JD: Molecular cloning, expression and chromosome 19 localization of a human Ro/SS-A auto antigen. J Clin Invest 85: 1379–1391, 1990

    Google Scholar 

  83. Zarain-Herzberg A, Fliegel L, MacLennan DH: Structure of the rabbit fast-twitch skeletal muscle calsequestrin gene. J Biol Chem 263: 4807–4812, 1988

    Google Scholar 

  84. Fujii J, Willard HF, MacLennan DH: Characterization and localization to human chromosome 1 of human fast-twitch skeletal muscle calsequestrin gene. Somatic Cell Mol Genetics 16: 18518, 1990

    Google Scholar 

  85. Khanna NC, Tokuda M, Waisman DM: Comparison of calregulins from vertebrate livers. Biochem J 242: 245–251, 1987

    Google Scholar 

  86. Kulomaa MS, Weigel NL, Kleinsek DA, Beattie WG, Conneely OM, March C, Zarucki-Schulz T, Schrader WT, O'Malley BW: Amino acid sequence of a chicken heat shock protein derived from the complementary DNA nucleotide sequence. Biochemistry 25: 6244–6251, 1986

    Google Scholar 

  87. Mazzarella RA, Green M: ERp99, an abundant, conserved glycoprotein of the endoplasmic reticulum, is homologous to the 90-kDa heat shock protein (hsp 90) and the 94-kDa glucose regulated protein (Grp94). J Biol Chem 262: 8875–8883, 1987

    Google Scholar 

  88. Pelham HRB: Activation of the heat-shock genes in eukaryotes. Trends Genet 1: 31–35, 1985

    Google Scholar 

  89. Munro S, Pelham HRB: An hsp 70-like protein in the ER: Identity with the 78kd glucose-regulated protein and immuno-globulin heavy chain binding protein. Cell 46: 291–300, 1986

    Google Scholar 

  90. Kelly RB: Tracking an elusive receptor. Nature 345: 480–481, 1990

    Google Scholar 

  91. Volpe P, Alderson-Lang BH, Madeddu L, Damiani E, Collins JH, Margreth A: Calsequestrin, a component of the inositol 1,4,5-trisphosphate-sensitive Ca2+ store of chicken cerebellum. Neuron 5: 713–721, 1990

    Google Scholar 

  92. Villa A, Podini P, Clegg DO, Pozzan T, Meldolesi J: Intracellular Ca2+ stores in chicken purkinje neurons: differential distribution of the low affinity-high capacity Ca2+ binding protein, calsequestrin, of Ca2+ ATPase and of the ER lumenal protein, BiP. J Cell Biol 113: 779–791, 1991

    Google Scholar 

  93. McPherson PS, Campbell KP: Solubilization and biochemical characterization of the high affinity [3H]ryanodine receptor from rabbit brain membranes. J Biol Chem 265: 18454–18460, 1990

    Google Scholar 

  94. McPherson PS, Kim YK, Valdivia H, Knudson CM, Takekura H, Franzini-Armstrong C, Coronado R, Campbell KP: The brain ryanodine receptor: a caffeine-sensitive calcium release channel. Neuron 7: 17–25, 1991

    Google Scholar 

  95. Damiani E, Tobaldin G, Volpe P, Margreth A: Quantitation of ryanodine receptor of rabbit skeletal muscle, heart and brain. Biochem Biophys Res Commun 175: 858–865, 1991

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milner, R.E., Famulski, K.S. & Michalak, M. Calcium binding proteins in the sarcoplasmic/endoplasmic reticulum of muscle and nonmuscle cells. Mol Cell Biochem 112, 1–13 (1992). https://doi.org/10.1007/BF00229637

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00229637

Key words

Navigation