Skip to main content
Log in

Determination of Young's modulus for spruce, fir and isotropic materials by the resonance flexure method with comparisons to static flexure and other dynamic methods

  • Originals
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Summary

Dynamic methods provide rapid and accurate means to determine Young's modulus, i.e. the modulus of elasticity, of wood. For dry, clear specimens of épicéa commun (Norway spruce, picea excelsa) and sapin pictiné (silver fir, abies amabilis) we present a comparison of results from tests by a resonance flexure method with results obtained from four-point static flexure tests. For a wide range of specimen size the resonance flexure method provides a simpler, more rapidly performed alternative to the classical static flexure method, giving Young's modulus values which are for the spruce and fir specimens of this study, nearly identical to those calculated from the static flexure tests. Results are also presented which show that a resonance longitudinal method yields higher values of Young's modulus and an ultrasonic method yields still higher values. We provide also a comparison of the four test methods applied to isotropic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arima, T.; Nakamura, N.; Maruyawa, N.; Hayamura, S. 1991: Classification of logs based on sound analysis and its application in product processing. Proc. Int. Timber Eng. Conf., London 2: 266–2,2.273

    Google Scholar 

  • Bordonne, P. A. 1989: Module dynamique et frottement intérieur dans le bois mesures sur poutres flottantes en vibrations naturelles. Doctoral thesis, l'Institut National Polytechnique de Lorraine, Nancy

    Google Scholar 

  • Brenndorfer, D. 1972: Nondestructive testing of wood with acoustic vibrations. Industria Lemn. 6: 234–240

    Google Scholar 

  • Bucur, V. 1985: Ultrasonic velocity, stiffness matrix and elastic constants of wood. CAS Journal 44: 23–28

    Google Scholar 

  • Chantre, G. 1989: Liaison entre rigidité et densité du bois a l'intérieur du cerne. DEA Etude (Masters Thesis) INRA, Nancy

    Google Scholar 

  • Chui, Y. H. 1991: Simultaneous evaluation of bending and shear moduli of wood and the influence of knots on these parameters. Wood Sci. Technol 25: 125–134

    Google Scholar 

  • Curie, P. 1989: Essais comparatif pour la mesure du module d'élasticité. Provisional report of the Centre Technique Forestier Tropical, Nogent-sur Marne

  • Dunlop, J. I. 1980: Testing of particleboard by acoustic techniques. Wood Sci. Technol 14: 69–78

    Google Scholar 

  • Dunlop, J. I. 1978: Damping loss in wood at midkilohertz frequencies. Wood Sci. Technol. 12: 49–62

    Google Scholar 

  • Ferry, J. D., Viscoelastic Properties of Polymers, John Wiley & Sons, New York, 1961, p. 420

    Google Scholar 

  • Gerhards, C. 1982: Longitudinal stress waves for lumber stress grading: factors affecting applications. States of art. Forest Prod. J. 32(2): 20–35

    Google Scholar 

  • Haines, D. W. 1979: On musical instrument wood, CAS Newsletter 31: 23–32

    Google Scholar 

  • Haines, D. W. 1980: On musical instrument wood — Part II, surface finishes, plywood, light and water exposure. CAS Newsletter 3: 19–23

    Google Scholar 

  • Hearmon, R. F. S. 1948: Elasticity of wood and plywood Forest Prod. Res. Spec. Rep. No. 7. His Majesty's Stationery Office, London, 87 pp

    Google Scholar 

  • Hearmon, R. F. S. 1965: The assessment of wood properties by vibrations and high frequency acoustic waves. Proc. 2nd Symp. on the NDT of wood, Washington State University, 49–65

  • Kolsky, H.; Stress Waves in Solids, Dover, New York, 1963, p. 121

    Google Scholar 

  • Moore, G. R.; Kline, D. E.; Blankerhorn, P. R. 1983: Dynamic mechanical properties of epoxy poplar composite materials. Wood Fiber Sci. 15(4): 358–375

    Google Scholar 

  • Morse, P.; Vibration and Sound, 2nd edition, McGraw-Hill, New York, 1948

    Google Scholar 

  • Radu, A.; Brenndorfer, D. 1976: Zur zerstorungsfreien prufung des solzed durch schwingungsversuche. Holz als Rohund-Werkstoff 34(6): 219–222

    Google Scholar 

  • Sinclair, A. N.; Farshad, M. 1987: A comparison of three methods for determining elastic constants of wood. Journal of Testing and Evaluation JTEVA 15(2): 77–86

    Google Scholar 

  • Sobue, N.; Iwasaki, Y. 1981a: Effect of veneer construction on anisotropy of dynamic viscoelasticity of plywood. Mokuzai Gakkaishi 27(6): 457–462

    Google Scholar 

  • Sobue, N.; Iwasaki, Y. 1981b: Effect of adhesive on dynamic viscoelasticity of laminated lumber of two-ply sawn laminae. Mokuzai Gakkaishi 27(7): 597–601

    Google Scholar 

  • Sobue, N. 1983: Prediction of dynamic Young's modulus and loss tangent of plywood in bending. Mokuzai Gakkaishi 29(1): 14–19

    Google Scholar 

  • Sobue, N. 1986a: Measurement of Young's modulus by the transient longitudinal vibration of wooden beams using a FFT spectrum analyser. Mokuzai Gakkaishi 32(9): 744–747

    Google Scholar 

  • Sobue, N. 1986b: Instantaneous measurement of elastic constants by analysis of the tap tone of wood. Application to flexural vibration of beams. Mokuzai Gakkaishi 32(4): 274–279

    Google Scholar 

  • Sobue, N. 1988: Simultaneous determination of Young's modulus and shear modulus of structural lumber by complex vibrations of bending and twisting. Mokuzai Gakkaishi 34(8): 652–657

    Google Scholar 

  • Timoshenko, S., Vibration Problems in Engineering, 3rd edition, D. Van Nostrand, New York, 1955

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors wish to thank Pierre Michel and André Perrin for preparing the test specimens and components of the test apparatus for this study

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haines, D.W., Leban, JM. & Herbé, C. Determination of Young's modulus for spruce, fir and isotropic materials by the resonance flexure method with comparisons to static flexure and other dynamic methods. Wood Sci.Technol. 30, 253–263 (1996). https://doi.org/10.1007/BF00229348

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00229348

Keywords

Navigation