Skip to main content
Log in

Laminar origin of striatal and thalamic projections of the prefrontal cortex in rhesus monkeys

  • Original Paper
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Prefrontostriatal and prefrontothalamic connections in rhesus monkeys have been shown to be organized in a topographic manner. These projections originate largely from infragranular layers V and VI. To examine whether the striatal and thalamic connections from the prefrontal cortex arise from separate neuronal populations or are collateralized, two different fluorescent retrograde tracers (diamidino yellow and fast blue) were injected into topographically similar regions of the head of the caudate nucleus and the mediodorsal nucleus in the same animal. The results show that although prefrontostriatal and prefrontothalamic projections arise from similar topographic regions, their laminar origins are distinctive. The connections to the head of the caudate nucleus originate mainly from layer Va, to a lesser extent from layer Vb, with a minor contribution from layers III and VI. In contrast, the projections to the mediodorsal nucleus emanate largely from layer VI, and also from layer Vb. Only occasional double-labeled neurons were observed, indicating that prefrontostriatal and prefrontothalamic connections originate from separate neuronal populations. The differential laminar distributions of neurons projecting to the head of the caudate nucleus and the mediodorsal nucleus suggest that these structures may receive independent types of information from the prefrontal cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggleton JP, Mishkin M (1983) Visual recognition impairment following medial thalamic lesions in monkeys. Neuropsychologia 21:189–197

    Google Scholar 

  • Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271

    Article  CAS  PubMed  Google Scholar 

  • Alexander GE, Fuster JM (1973) Effects of cooling prefrontal cortex on cell firing in the nucleus medialis dorsalis. Brain Res 61:93–105

    Google Scholar 

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  CAS  PubMed  Google Scholar 

  • Arikuni T, Kubota K (1986) The organization of prefrontocaudate projections and their laminar origin in the macaque monkey: a retrograde study using HRP-gel. J Comp Neurol 244:492–510

    Google Scholar 

  • Arikuni T, Sakai M, Kubota K (1983) Columnar aggregation of prefrontal and anterior cingulate cortical cells projecting to the thalamic mediodorsal nucleus in the monkey. J Comp Neurol 220:116–125

    Google Scholar 

  • Azuma M, Nakayama H, Sasaki Y, Suzuki H (1988) Relation between visual input and motor outflow for eye movements in monkey frontal eye field. Behav Brain Res 27:93–98

    Google Scholar 

  • Barbas H, Pandya DN (1989) Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J Comp Neurol 286:353–375

    Google Scholar 

  • Bauer RH, Fuster JM (1976) Delayed-matching and delayed-response deficit from cooling dorsolateral prefrontal cortex in monkeys. J Comp Physiol Psychol 90:293–302

    Google Scholar 

  • Benjamin RM, Burton H (1968) Projection of taste nerve afferents to anterior opercular-insular cortex in squirrel monkey (Saimiri sciureus). Brain Res 7:221–231

    Google Scholar 

  • Benjamin RM, Jackson JC (1974) Unit discharge in the mediodorsal nucleus of the squirrel monkey evoked by electrical stimulation of the olfactory bulb. Brain Res 75:181–191

    Google Scholar 

  • Butter CM, Snyder DR (1972) Alterations in aversive and aggressive behaviors following orbital frontal lesions in rhesus monkeys. Acta Neurobiol Exp 32:525–565

    Google Scholar 

  • Butter CM, Mishkin M, Mirsky AF (1968) Emotional responses toward humans in monkeys with selective frontal lesions. Physiol Behav 3:213–215

    Google Scholar 

  • Cavada C, Goldman-Rakic PS (1991) Topographic segregation of corticostriatal projections from posterior parietal subdivisions in the macaque monkey. Neuroscience 42:683–696

    Google Scholar 

  • Collin NG, Cowey A, Latto R, Marzi C (1982) The role of frontal eye-fields and superior colliculi in visual search and non-visual search in rhesus monkeys. Behav Brain Res 4:177–193

    Google Scholar 

  • Dassonville P, Schlag J, Schlag-Rey M (1992) The frontal eye field provides the goal of saccadic eye movement. Exp Brain Res 89:300–310

    Google Scholar 

  • DiPellegrino G, Wise SP (1991) A neurophysiological comparison of three distinct regions of the primate frontal lobe. Brain 114:951–978

    Google Scholar 

  • Divac I (1972) Neostriatum and functions of prefrontal cortex. Acta Neurobiol Exp 32:461–477

    Google Scholar 

  • Ferino F, Thierry AM, Saffroy M, Glowinski J (1987) Interhemispheric and subcortical collaterals of medial prefrontal cortical neurons in the rat. Brain Res 417:257–266

    Google Scholar 

  • Fisher RS, Boylan MK, Hull CD, Buchwald NA, Levine MS (1986) Branched projections of cat sensorimotor cortex: multiple retrograde labeling via commissural corticocortical, decussated corticostriatal and undecussated corticostriatal axons. Brain Res 384:395–400

    Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1991) Neuronal activity related to saccadic eye movements in the monkey's dorsolateral prefrontal cortex. J Neurophysiol 65:1464–1483

    CAS  PubMed  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1993) Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic “scotomas”. J Neurosci 13:1479–1497

    Google Scholar 

  • Fuster JM, Alexander GE (1973) Firing changes in cells of the nucleus medialis dorsalis associated with delayed response behavior. Brain Res 61:79–91

    Google Scholar 

  • Gaffan D, Harrison S (1989) A comparison of the effects of fornix transection and sulcus principalis ablation upon spatial learning by monkeys. Behav Brain Res 31:207–220

    Google Scholar 

  • Gaffan D, Murray EA (1990) Amygdalar interaction with the mediodorsal nucleus of the thalamus and the ventromedial prefrontal cortex in stimulus-reward associative learning in the monkey. J Neurosci 10:3479–3493

    Google Scholar 

  • Ganchrow D, Erickson RP (1972) Thalamocortical relations in gustation. Brain Res 36:289–305

    Google Scholar 

  • Giguere M, Goldman-Rakic PS (1988) Mediodorsal nucleus: areal, laminar, and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys. J Comp Neurol 277:195–213

    Google Scholar 

  • Goldberg ME, Bruce CJ (1985) Cerebral cortical activity associated with the orientation of visual attention in the rhesus monkey. Vision Res 25:471–481

    Google Scholar 

  • Hallowitz RA, MacLean PD (1977) Effects of vagal volleys on units of intralaminar and juxtalaminar thalamic nuclei in monkeys. Brain Res 130:271–286

    Google Scholar 

  • Hikosaka O, Sakamoto M, Usui S (1989a) Functional properties of monkey caudate neurons. I. Activities related to saccadic eye movements. J Neurophysiol 61:780–798

    Google Scholar 

  • Hikosaka O, Sakamoto M, Usui S (1989b) Functional properties of monkey caudate neurons. II. Visual and auditory responses. J Neurophysiol 61:799–813

    Google Scholar 

  • Hikosaka O, Sakamoto M, Usui S (1989c) Functional properties of monkey caudate neurons. III. Activities related to expectation of target and reward. J Neurophysiol 61:814–832

    Google Scholar 

  • Huerta MF, Kaas JH (1990) Supplementary eye field as defined by intracortical microstimulation: connections in macaques. J Comp Neurol 293:299–330

    Google Scholar 

  • Isseroff A, Rosvold HE, Galkin TW, Goldman-Rakic PS (1982) Spatial memory impairments following damage to the mediodorsal nucleus of the thalamus in rhesus monkeys. Brain Res 232:97–113

    Google Scholar 

  • Iversen SD, Mishkin M (1970) Perseverative interference in monkeys following selective lesions of the inferior prefrontal covexity. Exp Brain Res 11:376–386

    CAS  PubMed  Google Scholar 

  • Iversen SD, Mishkin M (1973) Comparison of superior temporal and inferior prefrontal lesions on auditory and non-auditory tasks in rhesus monkeys. Brain Res 55:355–367

    Google Scholar 

  • Jones EG (1985) The thalamus. Plenum, New York

    Google Scholar 

  • Jones EG, Burton H (1976) Areal differences in the laminar distribution of thalamic afferents in cortical fields of the insular, parietal and temporal regions of primates. J Comp Neurol 168:197–248

    CAS  Google Scholar 

  • Jones EG, Coulter JD, Burton H, Porter R (1977) Cells of origin and terminaldistribution of corticostriatal fibers arising in the sensory-motor cortex of monkeys. J Comp Neurol 173:53–80

    Google Scholar 

  • Kojima S, Goldman-Rakic PS (1984) Functional analysis of spatially discriminative neurons in prefrontal cortex of rhesus monkey. Brain Res 291:229–240

    Google Scholar 

  • Kowalska DM, Bachevalier J, Mishkin M (1991) The role of the inferior prefrontal convexity in performance of delayed non-matching-to-sample. Neuropsychologia 29:583–600

    Google Scholar 

  • Kusama T, Fujioka M, Miyakawa Y, Fujii M (1985) Connections of the fronto-parietal operculum with the posterior ventral thalamic nucleus, especially its medial nucleus, in monkeys. J Hirnforsch 26:317–331

    Google Scholar 

  • Lawler KA, Cowey A (1987) On the role of posterior parietal and prefrontal cortex in visuospatial perception and attention. Exp Brain Res 65:695–698

    Google Scholar 

  • Lynch JC (1987) Frontal eye field lesions in monkeys disrupt visual pursuit. Exp Brain Res 68:437–441

    Google Scholar 

  • MacAvoy MG, Gottlieb JP, Bruce CJ (1991) Smooth-pursuit eye movement representation in the primate frontal eye field. Cereb Cortex 1:95–102

    Google Scholar 

  • Motokizawa F (1974) Olfactory input to the thalamus: electrophysiological evidence. Brain Res 67:334–337

    Google Scholar 

  • Nakano Y, Oomura Y, Nishino H, Aou S, Yamamoto T, Nemoto S (1984) Neuronal activity in the medial orbitofrontal cortex of the behaving monkey: modulation by glucose and satiety. Brain Res Bull 12:381–385

    Google Scholar 

  • Niki H, Watanabe M (1976) Prefrontal unit activity and delayed response: relation to cue location versus direction of response. Brain Res 105:79–88

    Google Scholar 

  • Nishino H, Ono T, Sasaki K, Fukuda M, Muramoto KI (1984) Caudate unit activity during operant feeding behavior in monkeys and modulation by cooling prefrontal cortex. Behav Brain Res 11:21–33

    Google Scholar 

  • Ogawa H, Ito S-I, Nomura T (1989) Oral cavity representation at the frontal operculum of macaque monkeys. Neurosci Res 6:283–298

    Google Scholar 

  • Parthasarathy HB, Schall JD, Graybiel AM (1992) Distributed but convergent ordering of corticostriatal projections: analysis of the frontal eye field and the supplementary eye field in the macaque monkey. J Neurosci 12:4468–4488

    Google Scholar 

  • Passingham RE (1975) Delayed matching after selective prefrontal lesions in monkeys (Macaca mulatta). Brain Res 92:89–102

    Google Scholar 

  • Passingham RE (1985) Memory of monkeys (Macaca mulatta) with lesions in prefrontal cortex. Behav Neurosci 99:3–21

    Google Scholar 

  • Plata-Salamán CR, Scott TR (1992) Taste neurons in the cortex of the alert cynomolgus monkey. Brain Res Bull 28:333–336

    Google Scholar 

  • Pritchard TC, Hamilton RB, Morse JR, Norgren R (1986) Projections of thalamic gustatory and lingual areas in the monkey, Macaca fascicularis. J Comp Neurol 244:213–228

    Google Scholar 

  • Quintana J, Yajeya J, Fuster JM (1988) Prefrontal representation of stimulus attributes during delay tasks. I. Unit activity in cross-temporal integration of sensory and sensory-motor information. Brain Res 474:211–221

    Google Scholar 

  • Raleigh MJ, Steklis HD (1981) Effects of orbitofrontal and temporal neocortical lesions on the affiliative behavior of vervet monkeys (Cercopithecus aethiops sabaeus). Exp Neurol 73:378–389

    Google Scholar 

  • Rizzolatti G, Scandolara C, Matelli M, Gentilucci M (1981) Afferent properties of periarcuate neurons in macaque monkeys. II. Visual responses. Behav Brain Res 2:147–163

    Article  CAS  PubMed  Google Scholar 

  • Roberts TS, Akert K (1963) Insular and opercular cortex and its thalamic projection in Macaca mulatta. Schweiz Arch Neurol Psychiatr 92:1–43

    Google Scholar 

  • Rockland KR, Pandya DN (1979) Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res 179:3–20

    Article  CAS  PubMed  Google Scholar 

  • Rolls ET, Thorpe SJ, Maddison SP (1983) Responses of striatal neurons in the behaving monkey. 1. Head of the caudate nucleus. Behav Brain Res 7:179–210

    Google Scholar 

  • Rolls ET, Scott TR, Sienkiewicz ZJ, Yaxley S (1988) The responsiveness of neurones in the frontal opercular gustatory cortex of the macaque monkey is independent of hunger. J Physiol (Lond) 397:1–12

    Google Scholar 

  • Rolls ET, Yaxley S, Sienkiewicz ZJ (1990) Gustatory responses of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. J Neurophysiol 64:1055–1066

    Google Scholar 

  • Rosene DL, Roy NJ, Davis BJ (1986) A cryoprotection method that facilitates cutting frozen sections of whole monkey brains for histological and histochemical processing without freezing artifact. J Histochem Cytochem 34:1301–1315

    Google Scholar 

  • Rosenkilde CE, Bauer RH, Fuster JM (1981) Single cell activity in ventral prefrontal cortex of behaving monkeys. Brain Res 209:375–394

    Google Scholar 

  • Rosvold HE (1972) The frontal lobe system: Cortical-subcortical interrelationships. Acta Neurobiol Exp 32:439–460

    Google Scholar 

  • Rubinstein EH, Delgado JMR (1963) Inhibition induced by forebrain stimulation in the monkey. Am J Physiol 205:941–948

    Google Scholar 

  • Russchen FT, Amaral DG, Price JL (1987) The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey, Macaca fascicularis. J Comp Neurol 256:175–210

    Google Scholar 

  • Saint-Cyr JA, Ungerleider LG, Desimone R (1990) Organization of visual cortical inputs to the striatum and subsequent outputs to the pallido-nigral complex in the monkey. J Comp Neurol 298:129–156

    Google Scholar 

  • Schall JD (1991) Neuronal activity related to visually guided saccades in the frontal eye fields of rhesus monkeys: comparison with supplementary eye fields. J Neurophysiol 66:559–579

    Google Scholar 

  • Schlag J, Schlag-Rey M (1984) Visuomotor functions of central thalamus in monkey. II. Unit activity related to visual events, targeting, and fixation. J Neurophysiol 51:1175–1195

    Google Scholar 

  • Schlag J, Schlag-Rey M (1986) Role of the central thalamus in gaze control. In: Freund HJ, Büttner U, Cohen B, Noth J (eds) The oculomotor and skeletalmotor system: differences and similarities. Prog Brain Res 64:191–201

  • Schlag-Rey M, Schlag J (1984) Visuomotor functions of central thalamus in monkey. I. Unit activity related to spontaneous eye movements. J Neurophysiol 51:1149–1174

    Google Scholar 

  • Schultz W, Apicella P, Scarnati E, Ljungberg T (1992) Neuronal activity in monkey ventral striatum related to the expectation of reward. J Neurosci 12:4595–4610

    Google Scholar 

  • Scott TR, Yaxley S, Sienkiewicz ZJ, Rolls ET (1986) Gustatory responses in the frontal opercular cortex of the alert cynomolgus monkey. J Neurophysiol 56:876–890

    Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 5:776–794

    Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1988) Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior. J Neurosci 8:4049–4068

    CAS  PubMed  Google Scholar 

  • Siwek DF, Pandya DN (1991) Prefrontal projections to the mediodorsal nucleus of the thalamus in the rhesus monkey. J Comp Neurol 31:509–524

    Google Scholar 

  • Siwek DF, Pandya DN (1992) The differential laminar distribution of cells in prefrontal cortex projecting to the mediodorsal nucleus. Soc Neurosci Abstr 18:304

    Google Scholar 

  • Spatz WB (1977) Topographically organized reciprocal connections between areas 17 and MT (visual area of superior temporal sulcus) in the marmoset Callithrix jacchus. Exp Brain Res 27:559–572

    Google Scholar 

  • Stamm JS (1973) Functional dissociation between the inferior and arcuate segments of dorsolateral prefrontal cortex in the monkey. Neuropsychologia 11:181–190

    Google Scholar 

  • Tanabe T, Yarita H, Iino M, Ooshima Y, Takagi SF (1975) Olfactory projection area in orbitofrontal cortex of the monkey. J Neurophysiol 38:1269–1283

    Google Scholar 

  • Tanila H, Carlson S, Linnankoski I, Kahila H (1993) Regional distribution of functions in dorsolateral prefrontal cortex of the monkey. Behav Brain Res 53:63–72

    Google Scholar 

  • Vaadia E, Benson DA, Heinz RD, Goldstein MH Jr (1986) Unit study of monkey frontal cortex: active localization of auditory and visual stimuli. J Neurophysiol 56:934–952

    Google Scholar 

  • Van Essen DC, Maunsell JHR (1983) Hierarchical organization and functional streams in the visual cortex. Trends Neurosci 6:370–375

    Google Scholar 

  • Walker AE (1940) A cytoarchitectural study of the prefrontal area of the macaque monkey. J Comp Neurol 73:59–86

    Google Scholar 

  • Welch K, Stuteville P (1958) Experimental production of unilateral neglect in monkeys. Brain 81:341–347

    Google Scholar 

  • Wilson FAW, Scalaidhe SPO, Goldman-Rakic PS (1993) Dissociation of object and spatial processing domains in the primate prefrontal cortex. Science 260:1955–1958

    Google Scholar 

  • Wirth FP (1973) Insular-diencephalic connections in the macaque. J Comp Neurol 150:361–392

    Google Scholar 

  • Yarita H, Iino M, Kogure S, Takagi SF (1980) A transthalamic olfactory pathway to orbitofrontal cortex in the monkey. J Neurophysiol 43:69–85

    Google Scholar 

  • Yeterian EH, Pandya DN (1991) Prefrontostriatal connections in relation to cortical architectonic organization in rhesus monkeys. J Comp Neurol 312:43–67

    Google Scholar 

  • Yeterian EH, Pandya DN (1992) Laminar origin of striatal and thalamic projections of the prefrontal cortex in rhesus monkeys. Soc Neurosci Abstr 18:305

    Google Scholar 

  • Yeterian EH, Van Hoesen GW (1978) Cortico-striate projections in the rhesus monkey: the organization of certain cortico-caudate connections. Brain Res 139:43–63

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeterian, E.H., Pandya, D.N. Laminar origin of striatal and thalamic projections of the prefrontal cortex in rhesus monkeys. Exp Brain Res 99, 383–398 (1994). https://doi.org/10.1007/BF00228975

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00228975

Key words

Navigation