Skip to main content
Log in

Sensory responses of intralaminar thalamic neurons activated by the superior colliculus

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

The intralaminar thalamus of anesthetized rats was explored for neurons activated by stimulation of the superior colliculus and responsive to sensory inputs. Neurons activated by stimulation of the intermediate and deep collicular layers were distributed throughout the intralaminar thalamus. Approximately one half of them responded to tectal as well as sensory inputs. The majority were nociceptive or had a more complex response pattern including responses to auditory stimulation. A smaller population of low threshold units had contralateral orofacial receptive fields and responded to light taps; these units were preferentially localized anteriorly in the central lateral and paracentral nuclei. Neurons responsive to tectal and sensory stimulation were randomly intermingled with other neurons which had no detectable sensory input. The results indicate that ascending projection neurons of the intermediate and deep layers of the superior colliculus provide an input to functionally diverse subpopulations of intralaminar thalamic neurons. In view of its projections to motor cortex and basal ganglia, the intralaminar thalamus appears directly implicated in basal ganglia and superior colliculus related mechanisms of attention, arousal and postural orienting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahams VC, Clinton RJ, Downey D (1988) Somatosensory projections to the superior colliculus of the anaesthetized cat. J Physiol 396: 563–580

    Google Scholar 

  • Ahlenius S, Andén NE, Grabowska-Andén M (1982) Apomorphine-induced ipsilateral turning in rats with unilateral lesions of the parafascicular nucleus. Exp Brain Res 47: 270–276

    Google Scholar 

  • Albano JE, Wurtz RH (1982) Deficits in eye position following ablation of monkey superior colliculus, pretectum, and posterior-medial thalamus. J Neurophysiol 48: 318–337

    Google Scholar 

  • Albe-Fessard D, Besson JM (1973) Convergent thalamic and cortical projections — The non-specific system. In: Iggo A (eds) Handbook of sensory physiology. Springer, Berlin, pp 489–560

    Google Scholar 

  • Albe-Fessard D, Kruger L (1962) Duality of unit discharges from cat centrum medianum in response to natural and electrical stimulation. J Neurophysiol 25: 3–20

    Google Scholar 

  • Albe-Fessard D, Berkeley KJ, Kruger L, Ralston HJ III, Willis WD Jr (1985) Diencephalic mechanisms of pain sensation. Brain Res Rev 9: 217–296

    Google Scholar 

  • Aldes LD (1988) Thalamic connectivity of rat somatic motor cortex. Brain Res Bull 20: 333–348

    Google Scholar 

  • Auroy P, Irthum B, Woda A (1991) Oral nociceptive activity in the rat superior colliculus. Brain Res 549: 275–284

    Google Scholar 

  • Barth TM, Jones TA, Schallert T (1990) Functional subdivisions of the rat somatic sensorimotor cortex. Behav Brain Res 39: 73–95

    Google Scholar 

  • Bentivoglio M, Macchi G, Albanese A (1981) The cortical projections of the thalamic intralaminar nuclei, as studied in cat and rat with the multiple fluorescent retrograde tracing technique. Neurosci Lett 26: 5–10

    Google Scholar 

  • Bentivoglio M, Molinari M, Minchiacchi D, Macchi G (1983) Organization of the cortical projections of the posterior complex and intralaminar nuclei of the thalamus as studied by means of retrograde tracers. In: Macchi G, Rustioni A, Spreafico R (eds) Somatosensory integration in the thalamus. Elsevier, Amsterdam, pp 337–364

    Google Scholar 

  • Berendse HW, Groenewegen HJ (1990) Organization of the thalamostriatal projections in the rat, with special emphasis on the ventral striatum. J Comp Neurol 299: 187–228

    Google Scholar 

  • Bickford ME, Hall WC (1989) Collateral projections of predorsal bundle cells of the superior colliculus in the rat. J Comp Neurol 283: 86–106

    Google Scholar 

  • Bruce LL, McHaffie JG, Stein BE (1987) The organization of trigeminotectal and trigeminothalamic neurons in rodents: a double-labeling study with fluorescent dyes. J Comp Neurol 262: 315–330

    Google Scholar 

  • Burton H, Craig ADJ (1983) Spinothalamic projections in cat, racoon and monkey: a study based on anterograde transport of horseradish peroxidase. In: Macchi G, Rustioni A, Spreafico R (eds) Somatosensory integration in the thalamus. Elsevier, Amsterdam, pp 17–42

    Google Scholar 

  • Carli M, Jones GH, Robbins TW (1989) Effects of unilateral dorsal and ventral striatal dopamine depletion on visual neglect in the rat: a neural and behavioural analysis. Neuroscience 29: 309–327

    Google Scholar 

  • Chevalier G, Deniau JM (1984) Spatio-temporal organization of a branched tecto-spinal/tecto-diencephalic neuronal system. Neuroscience 12: 427–439

    Google Scholar 

  • Chevalier G, Vacher S, Deniau JM, Albe-Fessard D (1984) Tonic nigral control of tecto spinal/tecto diencephalic branched neurons: a possible implication of basal ganglia in orienting behavior. In: McKenzie JS, Kemm RE, Wilcock LN (eds) The basal ganglia. Plenum Press, New York, pp 247–259

    Google Scholar 

  • Chevalier G, Vacher S, Deniau JM, Desban M (1985) Disinhibition as a basic process in the expression of striatal functions. I. The striato-nigral influence on tecto-spinal/tecto-diencephalic neurons. Brain Res 334: 215–226

    Google Scholar 

  • Cicirata F, Angaut P, Cioni M, Serapide MF, Papale A (1986) Functional organization of thalamic projections to the motor cortex: an antomical and electrophysiological study in the rat. Neuroscience 19: 81–99

    Google Scholar 

  • Condé F, Audinat E, Maire-Lepoivre E, Crépel F (1990) Afferent connections of the medial frontal cortex of the rat: a study using retrograde transport of fluorescent dyes. I. Thalamic afferents. Brain Res Bull 24: 341–354

    Google Scholar 

  • Cowey A, Bozek T (1974) Contralateral “neglect” after unilateral dorsomedial prefrontal lesions in rats. Brain Res 72: 53–63

    Google Scholar 

  • Dean P, Redgrave P, Westby GWM (1989) Event or emergency? Two response systems in the mammalian superior colliculus. Trends Neurosci 12: 137–147

    Google Scholar 

  • Dong WK, Ryu H, Wagman IH (1978) Nociceptive responses of neurons in medial thalamus and their relationship to spinothalamic pathways. J Neurophysiol 41: 1592–1613

    Google Scholar 

  • Donoghue JP, Wise SP (1982) The motor cortex of the rat: Cytoarchitecture and microstrimulation mapping. J Comp Neurol 212: 76–88

    Google Scholar 

  • Dostrovsky JO, Guilbaud G (1990) Nociceptive responses in medial thalamus of the normal and arthritic rat. Pain 40: 93–104

    Google Scholar 

  • Drager UC, Hubel D (1975) Responses to visual stimulation and relationship between visual, auditory and somatosensory inputs in mouse superior colliculus. J Neurophysiol 38: 690–713

    Google Scholar 

  • Dubé L, Smith AD, Bolam JP (1988) Identification of synaptic terminals of thalamic or cortical origin in contact with distinct medium-size spiny neurons in the rat neostriatum. J Comp Neurol 267: 455–471

    Google Scholar 

  • Ellard CG, Goodale MA (1986) The role of the predorsal bundle in head and body movements elicited by electrical stimulation of the superior colliculus in the Mongolian gerbil. Exp Brain Res 64: 421–433

    Google Scholar 

  • Finlay BL, Schneps SE, Wilson KG, Schneider GE (1978) Topography of visual and somatosensory projections to the superior colliculus of the golden hamster. Brain Res 142: 224–235

    Google Scholar 

  • Gioanni Y, Lamarche M (1985) A reappraisal of rat motor cortex organization by intracortical microstimulation. Brain Res 344: 49–61

    Google Scholar 

  • Glenn LL, Steriade M (1982) Discharge rate and excitability of cortically projecting intralaminar thalamic neurons during waking and sleep states. J Neurosci 2: 1387–1404

    Google Scholar 

  • Graham J, Berman N (1981) Origins of the pretectal and tectal projections to the central lateral nucleus in the cat. Neurosci Lett 26: 209–214

    Google Scholar 

  • Grantyn A, Grantyn R (1982) Axonal patterns and sites of termination of cat superior colliculus neurons projecting in the tectobulbo-spinal tract. Exp Brain Res 46: 243–256

    Google Scholar 

  • Groenewegen HJ (1988) Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal-prefrontal topography. Neuroscience 24: 379–431

    Google Scholar 

  • Grunwerg BS, Krauthamer GM (1990) Vibrissa-responsive neurons of the superior colliculus that project to the intralaminar thalamus of the rat. Neurosci Lett 111: 23–27

    Google Scholar 

  • Hall RD, Lindholm EP (1974) Organization of motor and somatosensory neocortex in the albino rat. Brain Res 66: 23–38

    Google Scholar 

  • Heilman KM, Watson RT (1977) The neglect syndrome: A unilateral defect of the orienting response. In: Harnad S, Doty RW, Goldstein L, Jaynes J, Krauthamer G (eds) Lateralization in the nervous system. Academic Press, New York, pp 285–302

    Google Scholar 

  • Herkenham M (1980) Laminar organization of thalamic projections to the rat neocortex. Science 207: 532–535

    Google Scholar 

  • Herkenham M (1986) New perspectives on the organization and evolution of nonspecific thalamocortical projections. In: Jones EG, Peters A (eds) Cerebral cortex. Plenum, New York, pp 403–445

    Google Scholar 

  • Holstege G, Collewijn H (1982) The efferent connections of the nucleus of the optic tract and the superior colliculus in the rabbit. J Comp Neurol 209: 139–175

    Google Scholar 

  • Huerta MF, Harting JK (1984) The mammalian superior colliculus: studies of its morphology and connections. In: Venegas H (eds) Comparative neurology of the optic tectum. Plenum, New York, pp 687–773

    Google Scholar 

  • Huerta MF, Frankfurter A, Harting JK (1983) Studies of the principal sensory and spinal trigeminal nuclei of the rat: projections to the superior colliculus, inferior olive, and cerebellum. J Comp Neurol 220: 147–167

    Google Scholar 

  • Hunsperger RW, Roman D (1976) The integrative role of the intralaminar system of the thalamus in visual orienting and perception in cat. Exp Brain Res 25: 231–246

    Google Scholar 

  • Jones EG (1985) The thalamus. Plenum, New York

    Google Scholar 

  • Kao CQ, McHaffie JG, Meredith MA, Clemo HR, Stein BE (1990) Comparative magnification of the vibrissa representation in the superior colliculus of rodents and cats. Soc Neurosci Abstr 16: 223

    CAS  Google Scholar 

  • Kaufman EFS, Rosenquist AC (1985a) Afferent connections of the thalamic intralaminar nuclei in the cat. Brain Res 335: 281–296

    Google Scholar 

  • Kaufman EFS, Rosenquist AC (1985b) Efferent projections of the thalamic intralaminar nuclei in the cat. Brain Res 335: 257–279

    Google Scholar 

  • Kirvel RD (1975) Sensorimotor responsiveness in rats with unilateral superior collicular and amygdaloid lesions. J Comp Physiol Psychol 89: 882–891

    Google Scholar 

  • Kolb B (1984) Functions of the frontal cortrex of the rat: a comparative review. Brain Res Rev 8: 65–98

    Article  Google Scholar 

  • Krauthamer GM (1979) Sensory functions of the neostriatum. In: Divac I, Oberg GE (eds) The neostriatum. Pergamon Press, Oxford, pp 263–289

    Google Scholar 

  • Krauthamer GM, Yamasaki DS, Rhoades RW (1987) Does the neostriatum self-regulate its sensory input? The role of the superior colliculus. In: Schneider JS, Lidsky TI (eds) Basal ganglia and behavior: sensory aspects of motor functioning. Hans Huber, Toronto, pp 17–26

    Google Scholar 

  • Krettek JE, Price JL (1977) The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J Comp Neurol 171: 157–192

    Google Scholar 

  • Larson MA, McHaffie JG, Stein BA (1987) Response properties of nociceptive and low-threshold mechanoreceptive neurons in the hamster superior colliculus. Neuroscience 7: 547–564

    Google Scholar 

  • Leichnetz GR, Gonzalo-Ruiz A (1987) Collateralization of frontal eye field (medial precentral/anterior cingulate) neurons projecting to the paraoculomotor region, superior colliculus, and medial pontine reticular formation in the rat: a fluorescent double-labeling study. Exp Brain Res 68: 355–364

    Google Scholar 

  • Lim RKS, Krauthamer G, Guzman F, Fulp RR (1969) Central nervous system activity associated with the pain evoked by bradykinin and its alteration by morphine and aspirin. Proc Nat Acad Sci 63: 705–712

    Google Scholar 

  • Ljungberg T, Ungerstedt U (1976) Sensory inattention produced by 6-hydroxydopamine degeneration of ascending dopamine neurons in the brain. Exp Neurol 53: 585–600

    Google Scholar 

  • May PJ, Hall WC (1986) The sources of the nigrotectal pathway. Neuroscience 19: 159–180

    Google Scholar 

  • McGuiness CM, Krauthamer GM (1980) The afferent projections to the centrum medianum of the cat as demonstrated by retro grade transport of horseradish peroxidase. Brain Res 184: 255–269

    Google Scholar 

  • McHaffie JG, Stein BA (1982) Eye movements evoked by electrical stimulation in the superior colliculus of rats and hamsters. Brain Res 247: 243–253

    Google Scholar 

  • McHaffie JG, Kao C-Q, Stein BE (1989) Nociceptive neurons in rat superior colliculus: response properties, topography, and functional implications. J Neurophysiol 62: 510–525

    Google Scholar 

  • Miguel-Hidalgo J-J, Senba E, Matsutani S, Takatsuji K, Fukui H, Tohyama M (1989) Laminar and segregated distribution of immunoreactivities for some neuropeptides and adenosine deaminase in the superior colliculus of the rat. J Comp Neurol 280: 410–423

    Google Scholar 

  • Moschovakis AK, Karabelas AB (1985) Observations on the somatodendritic morphology and axonal trajectory of intracellularly HRP-labeled efferent neurons located in the deeper layers of the superior colliculus of the cat. J Comp Neurol 239: 276–308

    Google Scholar 

  • Orem J, Schlag-Rey M, Schlag J (1973) Unilateral visual neglect and thalamic intralaminar lesions in the cat. Exp Neurol 40: 784–797

    Google Scholar 

  • Passingham RE, Myers C, Rawlins N, Lightfoot V, Fearn S (1988) Premotor cortex in the rat. Behav Neurosci 102: 101–109

    Google Scholar 

  • Paxinos G, Watson C (1982) The rat brain in stereotaxic coordinates, 1 edn. Academic Press, Sidney

    Google Scholar 

  • Peschanski M (1984) Trigeminal afferents to the diencephalon in the rat. Neuroscience 12: 465–487

    Google Scholar 

  • Peschanski M, Besson JM (1984) A spino-reticulo-thalamic pathway in the rat: an anatomical study with reference to pain transmission. Neuroscience 12: 165–178

    Google Scholar 

  • Peschanski M, Guilbaud G, Gautron M (1981) Posterior intralaminar region in rat: neuronal responses to noxious and non-noxious cutaneous stimuli. Exp Neurol 72: 226–238

    Google Scholar 

  • Porter LL, White EL (1983) Afferent and efferent pathways of the vibrissal region of primary motor cortex in the mouse. J Comp Neurol 214: 279–289

    Google Scholar 

  • Posner MI, Presti DE (1987) Selective attention and cognitive control. Trends Neurosci 10: 13–17

    Google Scholar 

  • Prieto-Gomez B, Dafny N, Reyes-Vazquez C (1989) Dorsal raphe stimulation, 5-HT and morphine microiontophoresis effects on noxious and nonnoxious identified neurons in the medial thalamus of the rat. Brain Res Bull 22: 937–943

    Google Scholar 

  • Qiao J-T, Skolnick M, Dafny N (1988) Dorsal raphe and external electrical stimulation modulate noxious input to single neurons in nucleus parafascicularis thalami. Brain Res Bull 21: 671–675

    Google Scholar 

  • Redgrave P, Odekunle A, Dean P (1986) Tectal cells of origin of predorsal bundle in rat: location and segregation from ipsilateral descending pathway. Exp Brain Res 63: 279–293

    Google Scholar 

  • Reep RL, Corwin JV, Hashimoto A, Watson RT (1984) Afferent connections of medial precentral cortex in the rat. Neurosci Lett 44: 247–252

    Google Scholar 

  • Reyes-Vazquez C, Prieto-Gomez B, Dafny N (1989) Noxious and non-noxious responses in the medial thalamus of the rat. Neurol Res 11: 177–180

    Google Scholar 

  • Rhoades RW, Kuo DC, Polcer JD, Fish SE, Voneida TJ (1982) Indirect visual cortical input to the deep layers of the hamster's superior colliculus via the basal ganglia. J Comp Neurol 208: 239–254

    Google Scholar 

  • Rhoades RW, Mooney RD, Jacquin MF (1983) Complex somatosensory receptive fields of cells in the deep laminae of the hamster's superior colliculus. Neuroscience 3: 1342–1354

    Google Scholar 

  • Rhoades RW, Mooney RD, Klein BG, Jacquin MF, Szczepanik M, Chiaia NL (1987) The structural and functional characteristics of tectospinal neurons in the golden hamster. J Comp Neurol 255: 451–465

    Google Scholar 

  • Rhoades RW, Fish SE, Chiaia L, Bennett-Clarke C, Mooney RD (1989) Organization of the projections from the trigeminal brainstem complex to the superior colliculus in the rat and hamster: anterograde tracing with Phaseolus vulgaris leucoagglutinin and intra-axonal injection. J Comp Neurol 289: 641–656

    Google Scholar 

  • Royce GJ, Mourey RJ (1985) Efferent connections of the centromedian and parafascicular thalamic nuclei: An autoradiographic investigation in the cat. J Comp Neurol 235: 277–300

    Google Scholar 

  • Sanderson KJ, Welker W, Shambes GM (1984) Reevaluation of motor cortex and of sensorimotor overlap in cerebral cortex of albino rats. Brain Res 292: 251–260

    Google Scholar 

  • Schlag J, Schlag-Rey M (1984) Visuomotor functions of central thalamus in monkey. II. Unit activity related to visual events, targeting, and fixation. J Neurophysiol 51: 1175–1195

    Google Scholar 

  • Schlag-Rey M, Schlag J (1977) Visual and presaccadic neuronal activity in thalamic internal medullary lamina of cat: a study of targeting. J Neurophysiol 40: 156–173

    Google Scholar 

  • Sesack S, Deutsch AY, Roth RH, Bunney BS (1989) Topographical organization of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol 290: 213–242

    Google Scholar 

  • Smith Y, Seguela P, Parent A (1987) Distribution of GABAimmunoreactive neurons in the thalamus of the squirrel monkey (Saimiri sciureus). Neuroscience 22: 579–591

    Google Scholar 

  • Sparks DL (1988) Neural cartography: sensory and motor maps in the superior colliculus. Brain Behav Evol 31: 49–56

    Google Scholar 

  • Sprague JM, Meikle TH Jr (1965) The role of the superior colliculus in visually guided behavior. Exp Neurol 11: 114–146

    Google Scholar 

  • Stein BE, Dixon JP (1978) Superior colliculus cells respond to noxious stimuli. Brain Res 158: 65–73

    Google Scholar 

  • Takada M, Itoh K, Yasui Y, Sugimoto T, Mizuno N (1985) Topographical projections from the posterior thalamic regions to the striatum in the cat, with reference to possible tecto-thalamostriatal connections. Exp Brain Res 60: 385–396

    Google Scholar 

  • Tehovnik EJ, Spence SJ, Saint-Cyr JA (1989) Efferent projections of the anteromedial cortex of the rat as described by Phaseolus vulgaris leucoagglutinin immunohistochemistry. Behav Brain Res 35: 153–162

    Google Scholar 

  • Tömböl T, Bentivoglio M, Macchi G (1990) Neuronal cell types in the thalamic intralaminar central lateral nucleus of the cat. Exp Brain Res 81: 491–499

    Google Scholar 

  • Tokuno H, Nakamura Y (1987) Organization of the nigrotectospinal pathway in the cat: a light and electron microscopic study. Brain Res 436: 76–84

    Google Scholar 

  • Ullán J (1985) Cortical topography of thalamic intralaminar nuclei. Brain Res 328: 333–340

    Google Scholar 

  • Van der Kooy D (1979) The organization of the thalamic, nigral and raphe cells projecting to the medial vs lateral caudateputamen in rat: a fluorescent double labeling study. Brain Res 169: 381–387

    Google Scholar 

  • Vargo JM, Corwin JV, King V, Reep RL (1988) Hemispheric asymmetry in neglect produced by unilateral lesions of dorsomedial prefrontal cortex in rats. Exp Neurol 102: 199–209

    Google Scholar 

  • Veening JG, Cornelissen FM, Lieven PAJM (1980) The topical organization of the afferents to the caudatoputamen of the rat: a horseradish peroxidase study. Neuroscience 5: 1253–1268

    Google Scholar 

  • Westby GWM, Keay KA, Redgrave P, Dean P, Bannister M (1990) Output pathways from the rat superior colliculus mediating approach and avoidance have different sensory properties. Exp Brain Res 81: 626–638

    Google Scholar 

  • Williams MN, Faull RL (1988) The nigrotectal projection and tectospinal neurons in the rat: a light and electron microscopic study demonstrating a monosynaptic nigral input to identified tectospinal neurons. Neuroscience 25: 533–562

    Google Scholar 

  • Wurtz RH, Goldberg ME (1971) Superior colliculus cell responses related to eye movements in awake monkeys. Science 171: 82–84

    Google Scholar 

  • Yamasaki DSG, Krauthamer GM (1990) Somatosensory neurons projecting from the superior colliculus to the intralaminar thalamus in the rat. Brain Res 523: 188–194

    Google Scholar 

  • Yamasaki DSG, Krauthamer GM, Rhoades RW (1986) Superior collicular projection to intralaminar thalamus in rat. Brain Res 378: 223–233

    Google Scholar 

  • Yen C-T, Fu T-C, Chen R-C (1989) Distribution of thalamic nociceptive neurons activated from the tail of the rat. Brain Res 498: 118–122

    Google Scholar 

  • Zainos A, Deanda R, Chavez L, Garcia-Munoz L (1984) Turning behavior, barrel rolling, and sensory neglect induced by picrotoxin in the thalamus. Exp Neurol 83: 534–547

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grunwerg, B.S., Krauthamer, G.M. Sensory responses of intralaminar thalamic neurons activated by the superior colliculus. Exp Brain Res 88, 541–550 (1992). https://doi.org/10.1007/BF00228183

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00228183

Key words

Navigation