Skip to main content
Log in

Signalling by cGMP-dependent protein kinases

  • Part I: Basic Mechanisms
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The second messenger cGMP is a major intracellular mediator of the vaso-active agents nitric oxide and natriuretic peptides. The principal targets of cGMP are (i) phosphodiesterases, resulting in interference with the CAMP-signalling pathway, (ii) cGMPgated cation channels, and (iii) cGMP-dependent protein kinases (cGKs). Only two mammalian isotypes of cGK have been described so far: type I cGK, consisting of an α and a β isoform, presumably splice variants of a single gene, and identified as the most prominent cGK isotype in the cardio-vascular system; and type II cGK, expressed mainly in the intestine, the kidney and the brain. High levels of cGK I are found in vascular smooth muscle cells, endothelial cells and platelets. In these cells, cGK I is thought to counteract the increase in contraction provoked by Ca-mobilizing agonists, to reduce endothelial permeability and to inhibit platelet aggregation, respectively. Relatively low levels of cGK I are found in cardiomyocytes. In this cell type, cGK is implicated in the negative inotropic effect of cGMP, presumably through modulation of Ca channels and by diminishing the Ca-sensitivity of contractile proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashman DF, Lipton R, Melicow MM, Price T: Isolation of adenosine 3′, 5′-monophosphate and guanosine 3′, 5′-monophosphate from rat urine. Biochem Biophys Res Commun 11: 330–334, 1963

    Google Scholar 

  2. Arnold WP, Mittal CK, Katsuki S, Murad F: Nitric oxide activates guanylate cyclase and increases guanosine 3′, 5′-monophosphate levels in various tissue preparations. Proc Natl Acad Sci USA 74: 3203–3207, 1977

    Google Scholar 

  3. Field M., Graf LH jr, Laird WJ, Smith PL: Heat-stable enterotoxin of Escherichia coli: In vitro effects on guanylate cyclase activity, cyclic GMP concentration and ion transport. Proc Natl Acad Sci USA 75: 2800–2804, 1978

    Google Scholar 

  4. Murad F (ed): Cyclic GMP: synthesis, metabolism, and function. Adv Pharmacol 26: 1–330, 1994

    Google Scholar 

  5. Schmidt HHHW, Lohmann SM, Walter U: The nitric oxide and cGMP signal transduction system: regulation and mechanism of action. Biochim Biophys Acta 1178: 153–175, 1993

    Article  CAS  PubMed  Google Scholar 

  6. Currie MG, Geller D, Cole BR, Boylan JC, YuSheng W, Holmberg SW, Needleman P: Bioactive cardiac substances: potent vasorelaxant activity in mammalian atria. Science 221: 71–73, 1983

    Google Scholar 

  7. Flynn TG, deBold ML, deBold AJ: The amino acid sequence of an atrial peptide with potent diuretic and natriuretic properties. Biochem Biophys Res Commun 117: 859–865, 1983

    Google Scholar 

  8. Benner BM, Ballermann BJ, Gunning ME, Zeidel ML: Diverse biological actions of atrial natriuretic peptide. Physiol Rev 70: 665–699, 1990

    Google Scholar 

  9. Drewett JG, Garbers DL: The family of guanylyl cyclase receptors and their ligands. Endocrine Rev 15: 135–162, 1994

    Google Scholar 

  10. Sudoh T, Kangawa K, Minamino N, Matsuo H: A new natriuretic peptide in porcine brain. Nature 332: 78–81, 1988

    Google Scholar 

  11. Sudoh T, Minamino N, Kangawa K, Matsuo H: C-type natriuretic peptide (CNP): A new member of natriuretic peptide family identified in porcine brain. Biochem Biophys Res Commun 168: 863–870, 1990

    Google Scholar 

  12. Fuller F, Porter JG, Arfsten AE, Miller J, Schilling JW, Scarborough RM, Lewicki JA, Schenk DB: Atrial natriuretic peptide clearance receptor: Complete sequence and functional expression of cDNA clones. J Biol Chem 263: 9395–9401, 1988

    Google Scholar 

  13. Currie MG, Fok KF, Kato J, Moore RJ, Hamra FK, Duffin KL, Smith CE: Guanylin: An endogenous activator of intestinal guanylate cyclase. Proc Natl Acad Sci USA 89: 947–951, 1992

    Google Scholar 

  14. Forte LR, Currie MG: Guanylin: a peptide regulator of epithelial transport. FASEB J 9: 643–650, 1995

    Google Scholar 

  15. Palmer RMJ, Ferrige, AG, Moncada S: Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327: 524–526, 1987

    Article  CAS  PubMed  Google Scholar 

  16. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chadhuri G: Endothelium-derived relaxing factor produced and secreted from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84: 9265–9269, 1987

    CAS  PubMed  Google Scholar 

  17. Schmidt HHHM, Walter U: NO at work. Cell 78: 919–925, 1994

    Google Scholar 

  18. Petros A, Bennet D, Vallance P: Effect of nitric oxide synthase inhibitors on hypotension in patients with septic shock. Lancet 338: 1557–1558, 1991

    Google Scholar 

  19. Wei XQ, Charles IG, Smith A, Ure J, Feng GJ, Huang FP, Damo X, Muller W, Moncada S, Liew FY: Altered immune response in mice lacking inducible nitric oxide synthase. Nature 375: 408–411, 1995

    Google Scholar 

  20. Christodoulides N, Durante W, Kroll MH, Schafer AJ: Vascular smooth muscle cell heme oxygenases generate guanylyl cyclase-stimulatory carbon monoxide. Circulation 91: 2306–2309, 1995

    CAS  PubMed  Google Scholar 

  21. Garbers DL, Lowe DG: Guanylyl cyclase receptors. J Biol Chem 269: 30741–30744, 1994

    Google Scholar 

  22. Vaandrager AB, van der Wiel E, Hom ML, Luthjens, LH, De Jonge HR: Heat-stable enterotoxin receptor/guanylyl cyclase C is an oligomer consisting of functionally distinct subunits, which are non-covalently linked in the intestine. J Biol Chem 269: 16409–16415, 1994

    Google Scholar 

  23. Fulle HJ, Vassar R, Foster DC, Yang RB, Axel R, Garbers, DL: A receptor guanylyl cyclase expressed specifically in olfactory sensory neurons. Proc Natl Acad Sci USA 92: 3571–3575, 1995

    Google Scholar 

  24. Drewett JG, Fendly BM, Garbers DL, Lowe DG: Natriuretic peptide receptor-B (guanylyl cyclase-B) mediates C-type natriuretic peptide relaxation of precontracted rat aorta. J Biol Chem 270: 4668–4674, 1995

    Google Scholar 

  25. Vaandrager AB, De Jonge HR: Effects of cGMP on intestinal transport. Adv Pharmacol 26: 253–283, 1994

    Google Scholar 

  26. Butt E, Geiger J, Jarchau T, Lohmann SM, Walter U: The cGMP-dependent protein kinase: Gene, protein and function. Neurochem Res 18: 27–42, 1993

    Google Scholar 

  27. Baron DA, Lofton CE, Newman WH, Currie MG: Atriopeptin inhibition of thrombin-mediated changes in the morphology and permeability of endothelial monolayers. Proc Natl Acad Sci USA 86: 3394–3398, 1989

    Google Scholar 

  28. Appel RG: Growth-regulatory properties of atrial natriuretic factor. Am J Physiol 262: F911-F918, 1992

    Google Scholar 

  29. Forte LR, Thorne PK, Eber SL, Krause WJ, Freeman RH, Francis SH, Corbin JD: Stimulation of intestinal C1 transport by heat-stable enterotoxin: Activation of CAMP-dependent protein kinase by cGMP. Am J Physiol 263: C607-C615, 1992

    Google Scholar 

  30. Lincoln TM, Komalavilas P, Cornwell TL: Pleiotropic regulation of vascular smooth muscle tone by cGMP-dependent protein kinase. Hypertension 23: 1141–1147, 1994

    Google Scholar 

  31. Lincoln TM, Cornwell TL, Taylor AE: cGMP-dependent protein kinase mediates the reduction of Ca by CAMP in vascular smooth muscle cells. Am J Physiol 258: C399-C407, 1990

    Google Scholar 

  32. Lincoln TM, Cornwell TL: Intracellular cyclic GMP receptor proteins. FASEB J 7: 328–338, 1993

    Google Scholar 

  33. Biel M, Zong X, Distler M, Bosse E, Klugbauer N, Murakami M, Flockerzi V, Hofmann: Another member of the cyclic nucleotide-gated channel family, expressed in testis, kidney and heart. Proc Natl Acad Sci USA 91: 3505–3509, 1994

    Google Scholar 

  34. Light DB, Corbin JD, Stanton BA: Dual ion-channel regulation by cyclic GMP and cyclic GMP-dependent protein kinase. Nature 344: 336–339, 1990

    Google Scholar 

  35. Hofmann F, Dostmann W, Keilbach A, Landgraf W, Ruth P: Structure and physiological role of cGMP-dependent protein kinase. Biochim Biophys Acta 1135: 51–60, 1992

    Google Scholar 

  36. Francis SH, Corbin JD: Structure and function of cyclic nucleotide-dependent protein kinases. Ann Rev Physiol 56: 237–272, 1994

    Google Scholar 

  37. Colbran JL, Francis SH, Leach AB, Thomas MK, Jiang H, McAllister LM, Corbin JD: A phenylalanine in peptide substrates provides for selectivity between cGMP-dependent and cAMP-dependent protein kinases. J Biol Chem 267: 9589–9594, 1992

    Google Scholar 

  38. Butt E, Abel K, Krieger, M, Palm D, Hoppe V, Hoppe J, Walter U: CAMP- and cGMP dependent protein kinase phosphorylation sites of the focal adhesion vasodilator-stimulated phosphoprotein (VASP) in vitro and in intact human platelets. J Biol Chem 269: 14509–14517, 1994

    Google Scholar 

  39. Butt E, Nolte C, Schulz S, Beltman J, Beavo JA, Jastorff B, Walter U: Analysis of the functional role of cGMP-dependent protein kinase in intact human platelets using a specific activator 8-para-chlorophenylthio-cGMP. Biochem Pharmacol 43: 2591–2600, 1992

    Google Scholar 

  40. Butt E, Eigenthaler M, Genieser HG: (Rp)-8-pCPT-cGMPS, a novel cGMP-dependent protein kinase inhibitor. Eur J Pharmacol 269: 265–268, 1994

    Google Scholar 

  41. Sandberg M, Natarajan V, Ronander I, Kalderon D, Walter U, Lohmann SM, Jahnsen T: Molecular cloning and predicted full-lengths aminoacid sequence of the type Iβ isozyme of cGMP-dependent protein kinase from human placenta. FEBS Lett 255: 321–329, 1989

    Google Scholar 

  42. Wernet W, Flockerzi V, Hofmann F: The cDNA of the two isoforms of bovine cGMP-dependent protein kinase. FEBS Lett 251: 191–196, 1989

    Google Scholar 

  43. Uhler M: Cloning and expression of a novel cyclic GMP-dependent protein kinase from mouse brain. J Biol Chem 268: 13586–1359, 1993

    Google Scholar 

  44. Jarchau T, Häusler C, Markert T, Pohler D, Vandekerckhove J, De Jonge HR, Lohmann SM, Walter U: Cloning, expression and in situ localization of rat intestinal cGMP-dependent protein kinase II. Proc Natl Acad Sci USA 91: 9426–9430, 1994

    Google Scholar 

  45. French PJ, Bijman J, Edixhoven M, Vaandrager AB, Scholte BJ, Lohmann SM, Nairn AC, De Jonge HR: isotype-specific activation of CFTR-chloride channels by cGMP-dependent protein kinase type II. J Biol Chem 270: 26626–26631, 1995

    Google Scholar 

  46. Tilly BC, Bezstarosti K, Boomaars WEM, Marino CR, Lamers JMJ, De Jonge HR: Expression and regulation of chloride channels in neonatal rat heart cardiomyocytes. Mol Cell Biochem, this volume, pp. 129–155

  47. Dong Y-J, Chao AC, Kouyama K, Hsu Y-P, Bocian RC, Moss RB, Gardner P: Activation of CFTR chloride current by nitric oxide in human T lymphocytes. EMBO J 14: 2700–2707, 1995

    Google Scholar 

  48. Markert T, Vaandrager AB, Gambaryan S, Pöhler D, Häusler C, Walter U, De Jonge HR, Jarchau T, Lohmann SM: Endogenous expression of type II cGMP-dependent protein kinase mRNA and protein in rat intestine: Implications for cystic fibrosis transmembrane conductance regulator. J Clin Invest 96: 822–830, 1995

    Google Scholar 

  49. MacMillan-Crow LA, Lincoln TM: High-affinity binding and localization of the cyclic GMP-dependent protein kinase with the intermediate filament protein vimentin. Biochemistry 33: 8035–8043, 1994

    Google Scholar 

  50. De Jonge HR: Cyclic GMP-dependent protein kinase in intestinal brush borders. Adv Cyclic Nucleotide Res 14: 315–333, 1981

    Google Scholar 

  51. Draijer R, Vaandrager AB, Nolte C, De Jonge HR, Walter U, van Hinsbergh VWM: Expression and possible functional role of cGMP-dependent protein kinase and its substrate VASP in human endothelial cells of different origin. Circ Res 1995 77: 897–905, 1995

    Google Scholar 

  52. Mery P-F, Lohmann SM, Walter U, Fischmeister R: Ca current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci USA 88: 1197–1201, 1991

    Google Scholar 

  53. Keilbach A, Ruth P, Hofmann F: Detection of cGMP-dependent protein kinase isozymes by specific antibodies. Eur J Biochem 208: 467–473, 1992

    Google Scholar 

  54. Somlyo AP, Somlyo AV: Signal transduction and regulation in smooth muscle. Nature 372: 231–236, 1994

    Article  CAS  PubMed  Google Scholar 

  55. Pfeifer A, Numberg B, Kamm S, Uhde M, Schultz G, Ruth P, Hofmann F: Cyclic GMP-dependent protein kinase blocks pertussis toxin-sensitive hormone receptor signaling pathways in chinese hamster ovary cells. J Biol Chem 270: 9052–9059, 1995

    Google Scholar 

  56. Alioua A, Huggins JP, Rousseau E: PKG-1a phosphorylates the a subunit and upregulates reconstituted GKCa channels from tracheal smooth muscle. Am J Physiol 268: L1057-L1063, 1995

    Google Scholar 

  57. White RE, Lee AB, Shcherbatko AD, Lincoln TM, Schonbrunn A, Armstrong DL: Potassium channel stimulation by natriuretic peptides through cGMP-dependent dephosphorylation. Nature 361: 263–266, 1993

    Google Scholar 

  58. Eigenthaler M, Ullrich H, Geiger J, Horstrup K, Hönig-Liedl P, Wiebecke D, Walter U: Defective nitrovasodilator-stimulated protein phosphorylation and calcium regulation in cGMP-dependent protein kinase-deficient human platelets of chronic myelocytic leukemia. J Biol Chem 268: 13526–13531, 1993

    Google Scholar 

  59. Haffner C, Jarchau T, Reinhard M, Hoppe J, Lohmann SM, Walter U: Molecular cloning, structural analysis and functional expression of the proline-rich focal adhesion and microfilament-associated protein VASP. EMBO J 14: 19–27, 1995

    Google Scholar 

  60. Reinhard M, Halbrügge M, Scheer U, Wiegand C, Jockusch BM, Walter U: The 46/50 kDa phosphoprotein VASP purified from human platelets is a novel protein associated with actin filaments and focal contacts. EMBO J 11: 2063–2070, 1992

    Google Scholar 

  61. Lum H, Malik AB: Regulation of vascular endothelial barrier function. Am J Physiol 267: L223-L241, 1994

    Google Scholar 

  62. Draijer R, Atsma DE, van der Laarse A, van Hinsbergh VWM: cGMP and nitric oxide modulate thrombin-induced endothelial permeability. Regulation via different pathways in human aortic and umbilical vein endothelial cells. Circ Res 76: 199–208, 1995

    Google Scholar 

  63. Cannell MB, Cheng H, Lederer WJ: The control of calcium release in heart muscle. Science 268: 1045–1049, 1995

    Google Scholar 

  64. Hartzell HC, and Fischmeister R: Direct regulation of cardiac Ca channels by G proteins: neither proven nor necessary? Trends Pharmacol Sci 13: 380–385, 1992

    Google Scholar 

  65. Shah AM, Spurgeon HA, Sollott SJ, Talo A, Lakatta EG: 8-Br-cGMP reduces the myofilament response to Ca in intact cardiac myocytes. Circ Res 74: 970–978, 1994

    Google Scholar 

  66. Takens-Kwak BR, Jongsma HJ: Cardiac gap junctions: three distinct single channel conductances and their modulation by phosphorylating treatments. Pflügers Arch 422: 198–200, 1992

    Google Scholar 

  67. Clemo HF, Feher JJ, Baumgarten CM: Modulation of rabbit ventricular cell volume and Na/K/2Cl cotransport by cGMP and atrial natriuretic factor. J Gen Physiol 100: 89–114, 1992

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaandrager, A.B., de Jonge, H.R. Signalling by cGMP-dependent protein kinases. Mol Cell Biochem 157, 23–30 (1996). https://doi.org/10.1007/BF00227877

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00227877

Key words

Navigation