Skip to main content
Log in

Selectively 13C-enriched DNA: Dynamics of the C1′-H1′ vector in d(CGCAAATTTGCG)2

  • Research Paper
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

In order to examine the internal dynamic processes of the dodecamer d(CGCAAATTTGCG)2, the 13C-enriched oligonucleotide has been synthesized. The three central thymines were selectively 13C-labeled at the C1′ position and their spin-lattice relaxation parameters R(CZ), R(CX,Y), R(HZ→CZ), R(2HZCZ), R(2HZCX,Y) and R(H supCinfZ ) were measured. Density functions were computed for two models of internal motions. Comparisons of the experimental data were made with the spin-lattice relaxation rates rather than with the density functions, whose values were altered by accumulation of the uncertainties of each relaxation rate measurement. The spin-lattice relaxation rates were computed with respect to the motions of the sugar around the C1′-N1 bond. A two-state jump model between the anti- and syn-conformations with P(anti)/P(syn)=91/9 or a restricted rotation model with Δχ=28° and an internal diffusion coefficient of 30×107 s-1 gave a good fit with the experimental data. Twist, tilt or roll base motions have little effect on 13C1′ NMR relaxation. Simulation of spin-relaxation rates with the data obtained at several temperatures between 7 and 32 °C, where the dodecamer is double stranded, shows that the internal motion amplitude is independent of the temperature within this range, as expected for internal motion. Using the strong correlation which exists in a B-DNA structure between the χ and δ angle, we suggest that the change in the glycosidic angle value should be indicative of a sugar puckering between the C1′-exo and C2′-endo conformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AbragamA. (1961) The Principles of Nuclear Magnetism, Oxford University Press, Oxford.

    Google Scholar 

  • BorerP.N., LaPlanteS.R., KumarA., ZanattaN., MartinA., HakkinenA. and LevyG.C. (1994) Biochemistry, 33, 2441–2450.

    Article  Google Scholar 

  • BoydJ., HommelU. and CampbellI.D. (1990) Chem. Phys. Lett., 175, 477–483.

    Article  ADS  Google Scholar 

  • BrikiF., RamsteinJ., LaveryR. and GenestD. (1991) J. Am. Chem. Soc., 113, 2490–2493.

    Article  Google Scholar 

  • Briki, F. (1993) Ph.D. Thesis, University of Paris VI, Paris.

  • BrikiF. and GenestD. (1993) J. Biomol. Struct. Dyn., 11, 43–56.

    Google Scholar 

  • BrownD.G., SandersonM.S., GarmanE. and NeidleS. (1992) J. Mol. Biol., 226, 481–490.

    Article  Google Scholar 

  • ChanteloupL. and BeauJ.M. (1992) Tetrahedron Lett., 33, 5347–5350.

    Article  Google Scholar 

  • CollM., FrederickC.A., WangA.H.-J. and RichA. (1987) Proc. Natl. Acad. Sci. USA, 84, 8385–8389.

    ADS  Google Scholar 

  • DrewH.R., WingR.M., TakanoT., BrokaC., TanakaS., ItakuraK. and DickersonR.E. (1981) Proc. Natl. Acad. Sci. USA, 78, 2179–2183.

    ADS  Google Scholar 

  • EarlyT.A. and KearnsD.R. (1979) Proc. Natl. Acad. Sci. USA, 76, 4170–4174.

    Google Scholar 

  • EdwardsK.J., BrownD.G., SpinkN., SkellyJ.V. and NeidleS. (1992) J. Mol. Biol., 226, 1161–1173.

    Article  Google Scholar 

  • EimerW., WilliamsonJ.R., BoxerS.G. and PecoraR. (1990) Biochemistry, 29, 799–811.

    Article  Google Scholar 

  • FratiniA.V., KopkaM.L., DrewH.R. and DickersonR.E. (1982) J. Biol. Chem., 257, 14686–14707.

    Google Scholar 

  • GenestD. and WahlP.L. (1978) Biochim. Biophys. Acta, 521, 502–509.

    Google Scholar 

  • GueronM., KochoyanM. and LeroyJ.L. (1987) Nature, 328, 89–92.

    ADS  Google Scholar 

  • HoganM.E. and JardetzkyO. (1979) Proc. Natl. Acad. Sci. USA, 76, 6341–6345.

    ADS  Google Scholar 

  • HoganM.E. and JardetzkyO. (1980) Biochemistry, 19, 3460–3468.

    Google Scholar 

  • JanesN., GanapathyS. and OldfieldE. (1983) J. Magn. Reson., 54, 111–121.

    Google Scholar 

  • KayL.E., NicholsonL.K., DelaglioF., BaxA. and TorchiaD.A. (1992) J. Magn. Reson., 97, 359–375.

    Google Scholar 

  • KeepersJ.W. and JamesT.L. (1982) J. Am. Chem. Soc., 104, 929–939.

    Article  Google Scholar 

  • KoningT.M.G., BoelensR., Van derMarelG.A., VanBoomJ.H. and KapteinR. (1991) Biochemistry, 30, 3787–3797.

    Article  Google Scholar 

  • LancelotG. (1977) Biochimie, 59, 587–596.

    Google Scholar 

  • LancelotG., ChanteloupL., BeauJ.M. and ThuongN.T. (1993a) J. Am. Chem. Soc., 115, 1599–1600.

    Google Scholar 

  • LancelotG., ChanteloupL., BeauJ.M. and ThuongN.T. (1993b) J. Am. Chem. Soc., 115, 5891.

    Google Scholar 

  • LeroyJ.L., BrosetaD. and GueronM. (1985) J. Mol. Biol., 124, 165–178.

    Google Scholar 

  • LipariG. and SzaboA. (1982a) J. Am. Chem. Soc., 104, 4546–4559.

    Google Scholar 

  • LipariG. and SzaboA. (1982b) J. Am. Chem. Soc., 104, 4559–4570.

    Google Scholar 

  • McConnellK.J., NirmalaR., YoungM.A., RavishankerG. and VeveridgeD.L. (1994) J. Am. Chem. Soc., 116, 4461–4462.

    Article  Google Scholar 

  • NaitoA., GanapathyS., RaghunathanP. and McDowellC.A. (1983) J. Chem. Phys., 79, 4173–4182.

    ADS  Google Scholar 

  • PalmerA.G., RanceM. and WrightP.E. (1991) J. Am. Chem. Soc., 113, 4372–4380.

    Article  Google Scholar 

  • PeltonJ.G. and WemmerD.E. (1989) Proc. Natl. Acad. Sci. USA, 86, 5723–5727.

    ADS  Google Scholar 

  • PengJ.W., ThanabalV. and WagnerG. (1991) J. Magn. Reson., 94, 82–100.

    Google Scholar 

  • PengJ.W. and WagnerG. (1992) J. Magn. Reson., 98, 308–332.

    Google Scholar 

  • PinesA., GibbyM.G. and WaughJ.S. (1972) Chem. Phys. Lett., 15, 373–376.

    Article  ADS  Google Scholar 

  • RobinsM.J., WilsonJ.S. and HanskeF. (1983) J. Am. Chem. Soc., 105, 4059–4065.

    Article  Google Scholar 

  • RoseM.E. (1957) Elementary Theory of Angular Momentum, Wiley, New York, NY.

    Google Scholar 

  • SaengerW. (1984) Principles of Nucleic Acid Structure, Springer, New York, NY.

    Google Scholar 

  • SchmitzU., KumarA. and JamesT.L. (1992) J. Am. Chem. Soc., 114, 10654–10656.

    Article  Google Scholar 

  • SchurrJ.M. and FujimotoB.S. (1988) Biopolymers, 27, 1543–1569.

    Article  Google Scholar 

  • SinhaN.D., BiernatJ. and KösterH. (1983) Tetrahedron Lett., 24, 5843–5846.

    Google Scholar 

  • SwaminathanS., RavishankerG. and BeveridgeD.L. (1991) J. Am. Chem. Soc., 113, 5027–5040.

    Google Scholar 

  • TaberneroL., VerdaguerN., CollM., FitaI., Van derMarelG.A., VanBoomJ.H., RichA. and AymamiJ. (1993) Biochemistry, 32, 8403–8410.

    Article  Google Scholar 

  • TiradoM.M. and Garcia de la TorreJ. (1979) J. Chem. Phys., 71, 2581–2587.

    Article  ADS  Google Scholar 

  • TiradoM. M. and Garcia de la TorreJ. (1980) J. Chem. Phys., 73, 1986–1993.

    Article  ADS  Google Scholar 

  • VegaM.C., Garcia SaezI., AymamiJ., EritjaR., Van derMarelG.A., VanBoomJ.H., RichA. and CollM. (1994) Eur. J. Biochem., 222, 721–726.

    Article  Google Scholar 

  • VorbrüggenH., KrolikiewiczK. and BennuaB. (1981) Chem. Ber., 114, 1234–1255.

    Google Scholar 

  • WithkaJ.M., SwaminathanS., SrinivasanJ., BeveridgeD.L. and BoltonP.H. (1992) Science, 255, 597–599.

    ADS  Google Scholar 

  • WittebortR.J. and SzaboA. (1978) J. Chem. Phys., 69, 1722–1736.

    Article  ADS  Google Scholar 

  • WüthrichK. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaudin, F., Paquet, F., Chanteloup, L. et al. Selectively 13C-enriched DNA: Dynamics of the C1′-H1′ vector in d(CGCAAATTTGCG)2 . J Biomol NMR 5, 49–58 (1995). https://doi.org/10.1007/BF00227469

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00227469

Keywords

Navigation