Skip to main content
Log in

Fetal ventral mesencephalon of human and rat origin maintained in vitro and transplanted to 6-hydroxydopamine-lesioned rats gives rise to grafts rich in dopaminergic neurons

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Free-floating roller tube cultures of human fetal (embryonic age 6–10 weeks post-conception) and rat fetal (embryonic day 13) ventral mesencephalon were prepared. After 7–15 days in vitro, the mesencephalic tissue cultures were transplanted into the striatum of adult rats that had received unilateral injections of 6-hydroxydopamine into the nigrostriatal bundle 3–5 weeks prior to transplantation. Graft survival was assessed in tyrosine hydroxylase (TH)-immunostained serial sections of the grafted brains up to post-transplantation week 4 for the human fetal xenografts and post-transplantation week 11 for the rat fetal allografts. d-amphetamine-induced rotation was monitored up to 10 weeks after transplantation in the allografted animals and compared with that of lesioned-only control animals. All transplanted animals showed large, viable grafts containing TH-immunoreactive (ir) neurons. The density of TH-ir neurons in the human fetal xenografts and in rat fetal allografts was similar. A significant amelioration of the amphetamine-induced rotation was observed in the animals that received cultured tissue allografts. These results promote the feasibility of in vitro maintenance of fetal human and rat nigral tissue prior to transplantation using the free-floating roller tube technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abercrombie M (1946) Estimation of nuclear population from microtome sections. Anat Rec 94:239–247

    Google Scholar 

  • Bignami A, Raju T, Dahl D (1982) Localization of vimentin, the nonspecific intermediate filament protein, in embryonal glia and in early differentiating neurons. Dev Biol 91:286–295

    Google Scholar 

  • Breeze RE, Wells TH Jr, Freed CR (1995) Implantation of fetal tissue for the management of Parkinson's disease: a technical note. Neurosurgery 36:1044–1047

    Google Scholar 

  • Brundin P (1992) Dissection, preparation, and implantation of human embryonic brain tissue. In: Dunnett SB, Björklund A (eds) Neural transplantation: a practical approach. IRL Press, Oxford, pp 139–160

    Google Scholar 

  • Brundin P, Isacson O, Björklund A (1985) Monitoring of cell viability in suspensions of embryonic CNS tissue and its use as a criterion for intracerebral graft survival. Brain Res 331:251–259

    Google Scholar 

  • Brundin P, Nilsson OG, Strecker RE, Lindvall O, Astedt B, Björklund A (1986) Behavioural effects of human fetal dopamine neurons grafted in a rat model of Parkinson's disease. Exp Brain Res 65:235–240

    Google Scholar 

  • Brundin P, Barbin G, Strecker RE, Isacson O, Prochiantz A, Björklund A (1988) Survival and function of dissociated dopamine neurons grafted at different developmental stages or after being cultured in vitro. Brain Res Dev Brain Res 39:233–243

    Google Scholar 

  • Capowski JJ (1989) Computer techniques in neuroanatomy. Plenum, New York, pp 1–483

    Google Scholar 

  • Cenci MA, Campbell K, Björklund A (1993) Neuropeptide messenger RNA expression in the 6-hydroxydopamine-lesioned rat striatum reinnervated by fetal dopaminergic transplants: differential effects of the grafts on preproenkephalin, preprotachykinin and prodynorphin messenger RNA levels. Neuroscience 57:275–296

    Google Scholar 

  • Clarke SR, Shetty AK, Bradley JL, Turner DA (1994) Reactive astrocytes express the embryonic intermediate neurofilament nestin. Neuroreport 5:1885–1888

    Google Scholar 

  • Dahlstrand J, Collins VP, Lendahl U (1992a) Expression of class VI intermediate filament nestin in human central nervous system tumours. Cancer 52:5334–5341

    Google Scholar 

  • Dahlstrand J, Zimmerman LB, McKay RDG, Lendahl U (1992b) Characterisation of the human nestin gene reveals a close evolutionary relationship to neurofilaments. J Cell Sci 103:589–597

    Google Scholar 

  • Dahlstrand J, Lardelli M, Lendahl U (1995) Nestin mRNA expression correlates with central nervous system progenitor cell state in many, but not all, regions of developing central nervous system. Brain Res Dev Brain Res 84:109–129

    Google Scholar 

  • Doucet G, Murata Y, Brundin P, Bosler O, Mons N, Geffard M, Ouimet CC, Björklund A (1989) Host afferents into intrastriatal transplants of fetal ventral mesencephalon. Exp Neurol 106:1–19

    Google Scholar 

  • Dunnett SB (1991) Transplantation of embryonic dopamine neurons: what we know from rats. J Neurol 238:65–74

    Google Scholar 

  • Dunnett SB, Björklund A (1992) Staging and dissection of rat embryos. In: Dunnett SB, Björklund A (eds) Neural transplantation: a practical approach. IRL Press, Oxford, pp 1–19

    Google Scholar 

  • Dunnett SB, Björklund A, Schmidt RH, Stenevi U, Iversen SD (1983) Intracerebral grafting of neuronal cell suspensions. IV. Behavioural recovery in rats with unilateral 6-OHDA lesions following implantation of nigral cell suspensions in different forebrain sites. Acta Physiol Scand [Suppl] 522:29–37

    Google Scholar 

  • Dunnett SB, Isacson O, Sirinathsinghji DJS, Clarke DJ, Björklund A (1988) Striatal grafts in rats with unilateral neostriatal lesions. III. Recovery from dopamine-dependent motor asymmetry and deficits in skilled paw reaching. Neuroscience 24:813–820

    Google Scholar 

  • Fawcett JW, Barker RA, Dunnett SB (1995) Dopaminergic neuronal survival and the effects of bFGF in expiant, three dimensional and monolayer cultures of embryonic rat ventral mesencephalon. Exp Brain Res 106:275–282

    Google Scholar 

  • Freed CR, Breeze RE, Rosenberg NL, Schneck SA, Kriek E, Qi J, Lone T, Zhang Y, Snyder JA, Wells TH, Olson Ramig L, Thompson L, Mazziotta JC, Huang SC, Grafton ST, Brooks D, Sawle GV, Schroter G, Ansari AA (1992) Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson's disease. N Engl J Med 327:1549–1555

    Google Scholar 

  • Freund TF, Bolam JP, Björklund A, Dunnett SB, Smith AD (1985a) Synaptic connections of grafted dopaminergic neurons that reinnervate the neostriatum: a thyrosine hydroxylase immunohistochemical study. In: Björklund A, Stenevi U (eds) Neural grafting in the mammalian CNS. Elsevier Science, Amsterdam, pp 529–549

    Google Scholar 

  • Freund TF, Bolam JP, Björklund A, Stenevi U, Dunnett SB, Powell JF, Smith AD (1985b) Efferent synaptic connections of grafted dopaminergic neurons reinnervating the host neostriatum: a tyrosine hydroxylase immunocytochemical study. J Neurosci 5:603–616

    Google Scholar 

  • Frodl EM, Duan WM, Sauer H, Kupsch A, Brundin P (1994) Human embryonic dopamine neurons xenografted to the rat: effects of cryopreservation and varying regional source of donor cells on transplant survival, morphology and function. Brain Res 647:286–298

    Google Scholar 

  • Hemmendinger LM, Garber BB, Hoffmann PC, Heller A (1981) Selective association of embryonic murine mesencephalic dopamine neurons in vitro. Brain Res 222:417–422

    Google Scholar 

  • Kordower JH, Freeman TB, Snow BJ, Vingerhoets FJG, Mufson EJ, Sanberg PR, Hauser RA, Smith DA, Nauert GM, Perl DP, Olanow CW (1995) Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson's disease. N Engl J Med 332:1118–1124

    Google Scholar 

  • Lendahl U, Zimmerman LB, McKay RDG (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60:585–595

    Google Scholar 

  • Lindvall O (1994) Neural transplantation in Parkinson's disease. In: Dunnett SB, Björklund A (eds) Functional neural transplantation. Raven, New York, pp 103–137

    Google Scholar 

  • Lindvall O, Rehncrona S, Brundin P, Gustavii B, Astedt B, Widner H, Lindholm T, Björklund A, Leenders KL, Rothwell JC, Frackowiak R, Marsden CD, Johnels B, Steg G, Freedman R, Hoffer BJ, Seiger Å, Bygdeman M, Strömberg I, Olson L (1989) Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson's disease. A detailed account of methodology and a 6-month follow-up. Arch Neurol 46:615–631

    Google Scholar 

  • Lindvall O, Widner H, Rehncrona S, Brundin P, Odin O, Gustavii B, Frackowiak R, Leenders KL, Sawle GV, Rothwell JC, Björklund A, Marsden CD (1992) Transplantation of fetal dopamine neurons in Parkinson's disease: one-year clinical and neurophysiological observations in two patients with putaminal implants. Ann Neurol 31:155–165

    Google Scholar 

  • Meyer M, Widmer HR, Evtouchenko L, Gutzman R, Seiler RW, Zimmer J, Spenger C (1996) Transplantation of fresh cell suspensions versus cultured tissue of fetal rat mesencephalon to 6-hydroyxydopamine-lesioned rats. Soc Neurosci Abstr (in press)

  • Nikkhah G, Duan WM, Knappe U, Jodicke A, Björklund A (1993) Restoration of complex sensorimotor behavior and skilled forelimb use by a modified nigral cell suspension transplantation approach in the rat parkinson model. Neuroscience 56:33–43

    Google Scholar 

  • Nikkhah G, Cunningham MG, Jödicke A, Knappe U, Björklund A (1994a) Improved graft survival and striatal reinnervation by microtransplantation of fetal nigral cell suspensions in the rat Parkinson model. Brain Res 633:133–143

    Google Scholar 

  • Nikkhah G, Olsson M, Eberhard J, Bentlage C, Cunningham MG, Björklund A (1994b) A microtransplantation approach for cell suspension grafting in the rat Parkinson model: a detailed account of the methodology. Neuroscience 63:57–72

    Google Scholar 

  • Perlow MJ, Freed WJ, Hoffer BJ, Seiger Å, Olson L, Wyatt RJ (1979) Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science 204:643–646

    Google Scholar 

  • Peschanski M, Defer G, N'Guyen JP, Ricolfi F, Monfort JC, Remy P, Geny C, Samson Y, Hantraye P, Jeny R, Gaston A, Kéravel Y, Degos JD, Cesaro P (1994) Bilateral motor improvement and alteration of l-dopa effect in two patients with Parkinson's disease following intrastriatal transplantation of fetal ventral mesencephalon. Brain 117:487–499

    Google Scholar 

  • Pulliam L, Berens ME, Rosenblum ML (1988) A normal brain cell aggregate model for neurobiological studies. J Neurosci Res 21:521–530

    Google Scholar 

  • Sladek JR Jr, Elsworth JD, Roth RH, Evans LE, Collier TJ, Cooper SJ, Taylor JR, Redmond DE Jr (1993) Fetal dopamine cell survival after transplantation is dramatically improved at a critical donor gestational age in nonhuman primates. Exp Neurol 122:16–27

    Google Scholar 

  • Sørensen JC, Ostergaard K, Zimmer J (1994) Grafting of dopaminergic ventral mesencephalic slice cultures to the striatum of adult rats. Exp Neurol 127:199–206

    Google Scholar 

  • Spector DH, Boss BD, Strecker RE (1993) A model three-dimensional culture system for mammalian dopaminergic precursor cells: application for functional intracerebral transplantation. Exp Neurol 124:253–264

    Google Scholar 

  • Spencer DD, Robbins RJ, Naftolin F, Marek KL, Vollmer T, Leranth C, Roth RH, Price LH, Gjedde A, Bunney BS, Sass KJ, Elsworth JD, Kier EL, Makuch R, Hoffer PB, Redmond DE Jr (1992) Unilateral transplantation of human fetal mesencephalic tissue into the caudate nucleus of patients with Parkinson's disease. N Engl J Med 327:1541–1548

    Google Scholar 

  • Spenger C, Studer L, Evtouchenko L, Egli M, Burgunder JM, Markwalder R, Seiler RW (1994) Long-term survival of dopaminergic neurones in free-floating roller tube cultures of human fetal ventral mesencephalon. J Neurosci Methods 54:63–73

    Google Scholar 

  • Spenger C, Hyman C, Studer L, Egli M, Evtouchenko L, Jackson C, Dahl-Jørgensen A, Lindsay RM, Seiler RW (1995) BDNF augments phenotype expression of dopaminergic, serotonergic, and GABAergic neurons in cultures of human fetal ventral mesencephalon. Exp Neurol 133:1–14

    Google Scholar 

  • Stagaard M, Mollgard K (1989) The developing neuroepithelium in human embryonic and fetal brain studied with vimentin-immunocytochemistry. Anat Embryol 180:17–28

    Google Scholar 

  • Strecker RE, Miao R, Loring JF (1989) Survival and function of aggregate cultures of rat fetal dopamine neurons grafted in a rat model of Parkinson's disease. Exp Brain Res 76:315–322

    Google Scholar 

  • Strömberg I, Almqvist P, Bygdeman M, Finger TE, Gerhardt G, Granholm AC, Mahalik TJ, Seiger Å, Olson L, Hoffer BJ (1989) Human fetal mesencephalic tissue grafted to dopaminedenervated striatum of athymic rats: light- and electron-microscopical histochemistry and in vivo chronoamperometric studies. J Neurosci 9:614–624

    Google Scholar 

  • Strömberg I, Van Horne C, Bygdeman M, Weiner N, Gerhardt GA (1991) Function of intraventricular human mesencephalic xenografts in immunosuppressed rats: an electrophysiological and neurochemical analysis. Exp Neurol 112:140–152

    Google Scholar 

  • Strömberg I, Adams C, Bygdeman M, Hoffer BJ, Boyson S, Humpel C (1995) Long-term effects of human-to-rat mesencephalic xenografts on rotational behavior, striatal dopamine receptor binding, and mRNA levels. Brain Res Bull 38:221–233

    Google Scholar 

  • Studer L, Spenger C, Bühler B, Evtouchenko L, Seiler RW (1995) Non-invasive dopamine determination by reversed phase HPLC in the medium of fetal mesencephalic cultures. A tool to enrich graft capacity prior to transplantation. Soc Neurosci Abstr 21:2026

    Google Scholar 

  • Studer L, Psylla M, Bühler B, Evtouchenko L, Vouga CM, Leenders KL, Seiler RW, Spenger C (1996) Non-invasive dopamine determination by reversed phase HPLC in the medium of freefloating roller tube cultures of rat fetal ventral mesencephalon. A tool to assess dopaminergic tissue prior to grafting. Brain Res Bull (in press)

  • Tohyama T, Lee VM-Y, Borke LB, Marvin M, McKay RDG, Trojanowski JQ (1992) Nestin expression in embryonic human neuroepithelial tumour cells. Lab Invest 66:303–313

    Google Scholar 

  • Widner H, Tetrud J, Rehncrona S, Snow B, Brundin P, Gustavii B, Björklund A, Lindvall O, Langston JW (1992) Bilateral fetal mesencephalic grafting in two patients with parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). N Engl J Med 327:1556–1563

    Google Scholar 

  • Zabek M, Mazurowski W, Dymecki J, Stelmachow J, Zawada E (1994) A long term follow-up of fetal dopaminergic neurons transplantation into the brain of three parkinsonian patients. Restor Neurol Neurosci 6:97–106

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spenger, C., Haque, N.S.K., Studer, L. et al. Fetal ventral mesencephalon of human and rat origin maintained in vitro and transplanted to 6-hydroxydopamine-lesioned rats gives rise to grafts rich in dopaminergic neurons. Exp Brain Res 112, 47–57 (1996). https://doi.org/10.1007/BF00227177

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00227177

Key words

Navigation