Skip to main content
Log in

Regulation of ribonucleotide reductase activity in mammalian cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

Mammalian ribonucleotide reductase catalyzes the rate-limiting reaction for the de novo synthesis 2′-deoxyribonucleoside 5′-triphosphates. There is some suggestion that this step may also be the rate-limiting step of DNA synthesis. It is apparent that the level of the enzyme, ribonucleotide reductase, varies through the cell cycle and is highest in those tissues with the greatest proliferation rate. This increase in activity is associated with increased protein synthesis. The purified enzyme has been shown to be subject to strict allosteric regulation by the various nucleoside triphosphates and it has been proposed that allosteric regulation plays an important role in the level of ribonucleotide reductase activity which is expressed. All experimental data relating to this point, however, do not support the role of deoxyribonucleoside triphosphates as a major factor in determining cellular reductase activity during normal cell division. Several naturally occurring factors have been isolated from cells which lower ribonucleotide reductase activity in vitro. These factors have been found in tissues of low growth fraction and appear to be absent or low in tissues of high growth fraction such as tumor, regenerating liver and embryonic tissues.

The expression of intracellular ribonucleotide reductase activity is therefore controlled at various levels and by various factors and the prevailing mode of regulation may vary throughout the cell cycle transverse and also in the various types of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jackson, R. C., Lui, M. S., Boritzki, T. J., Morris, H. P. and Weber, G., 1980. Cancer Res. 40: 1286–1291.

    Google Scholar 

  2. Rose, I. A. and Schweigert, B. S., 1953. J. Biol. Chem. 202: 635–645.

    Google Scholar 

  3. Moore, E. C. and Reichard, P., 1964. J. Biol. Chem. 239: 3453–3456.

    Google Scholar 

  4. Moore, E. C., 1967. Biochem. Biophys. Res. Commun. 29: 264–268.

    Google Scholar 

  5. Takeda, E. and Weber, G., 1981. Life Sci. 28: 1007–1014.

    Google Scholar 

  6. Cory, J. G. and Whitford, T. W. Jr., 1972. Cancer Res. 32: 1301–1306.

    Google Scholar 

  7. Cory, J. G., 1975. Medikon 4: 5–10.

    Google Scholar 

  8. King, C. R. and Van Lancker, J. L., 1969. Arch. Biochem. Biophys. 129: 603–608.

    Google Scholar 

  9. Larsson, A., 1969. Eur. J. Biochem. 11: 113–121.

    Google Scholar 

  10. Elford, H. L., Freese, M., Passamani, E. and Morris, H. P., 1970. J. Biol. Chem. 245: 5228–5233.

    Google Scholar 

  11. Turner, M. K., Abrams, R. and Lieberman, I., 1968. J. Biol. Chem. 243: 3725–3728.

    Google Scholar 

  12. Murphree, S., Stubblefield, E. and Moore, E. C., 1969. Exptl. Cell Res. 58: 118–124.

    Google Scholar 

  13. Lin, A. L. and Elford, H. L., 1980. J. Biol. Chem. 255: 8523–8528.

    Google Scholar 

  14. Elford, H. L., Bonner, E. L., Kerr, B. H., Hanna, S. D. and Smulson, M., 1977. Cancer Res. 37: 4389–4394.

    Google Scholar 

  15. Elford, H. L., 1972. Adv. Enz. Reg. 10: 19–38.

    Google Scholar 

  16. Hopper, S., 1972. J. Biol. Chem. 247: 3336–3340.

    Google Scholar 

  17. Moore, E. C., 1977. Adv. Enz. Reg. 15: 101–114.

    Google Scholar 

  18. Cory, J. G., Fleischer, A. E. and Munro, J. B. III, 1978. J. Biol. Chem. 253: 2898–2901.

    Google Scholar 

  19. Chang, C.-H. and Cheng, Y.-C., 1979. Cancer Res. 39: 436–442.

    Google Scholar 

  20. Thelander, E., Eriksson, S. and Akerman, M., 1980. J. Biol. Chem. 255: 7426–7432.

    Google Scholar 

  21. Mattaliano, R. J., Sloan, A. M., Plumer, E. R. and Klippenstein, G. L., 1981. Biochem. Biophys. Res. Commun. 102: 667–674.

    Google Scholar 

  22. Cory, J. G. and Fleischer, A. E., 1979. Cancer Res. 39: 4600–4604.

    Google Scholar 

  23. Klippenstein, G. L. and Cory, J. G., 1978. Biochem. Biophys. Res. Common. 83: 252–258.

    Google Scholar 

  24. Cory, J. G., Sato, A. and Lasater, L., 1981. Adv. Enz. Reg. 19: 139–150.

    Google Scholar 

  25. Cory J. G. and Fleischer, A. L., 1982. Arch. Biochem. Biophys. 217: 546–551.

    Google Scholar 

  26. Cory, J. G. and Fleischer, A. E., 1982. J. Biol. Chem. 257: 1263–1266.

    Google Scholar 

  27. Eriksson, S. and Martin, D. S. Jr., 1981. J. Biol. Chem. 256: 9436–9440.

    Google Scholar 

  28. Akerblom, L., Ehrenberg, A., Graslund, A., Lankinen, H., Reichard, P. and Thelander, L., 1981. Proc. Natl. Acad. Sci. U.S.A. 78:2159–2163.

    Google Scholar 

  29. Lewis, W. H., Kuzik, B. A. and Wright, J. A., 1978. J. Cell. Physiol. 94: 287–298.

    Google Scholar 

  30. Koropatnick, S. E. and Wright, J. A., 1980. Enzyme 25: 220–227.

    Google Scholar 

  31. Eriksson, S., Gudas, L. J., Ullman, B., Clift, S. M. and Martin, D. W. Jr., 1981. J. Biol. Chem. 256: 10184–10188.

    Google Scholar 

  32. Ullman, B., Gudas, L. J., Clift, S. M. and Martin, D. W. Jr., 1979. Proc. Natl. Acad. Sci. U.S.A. 76: 1074–1078.

    Google Scholar 

  33. Ullman, B., Gudas, L. J., Caras, I. W., Eriksson, S., Weinberg, G. L., Wormsted, M. A. and Martin, D. W. Jr., 1981. J. Biol. Chem. 256: 10189–10192.

    Google Scholar 

  34. Eriksson, S., Gudas, L. J., Clift, S. M., Caras, I. W., Ullman, B. and Martin, D. W. Jr., 1981. J. Biol. Chem. 256: 10193–10197.

    Google Scholar 

  35. Wright, J. A., Hards, R. G. and Dick, J. E., 1981. Adv. Enz. Reg. 19: 105–137.

    Google Scholar 

  36. Cory, J. G. and Mansell, M. M., 1975. Cancer Res. 35: 2327–2331.

    Google Scholar 

  37. Cory, J. G. and Mansell, M. M., 1975. Cancer Res. 35: 390–396.

    Google Scholar 

  38. Youdale, T., MacManus, J. P. and Whitfield, J. F., 1982. Can. J. Biochem. 60: 463–470.

    Google Scholar 

  39. Youdale, T. and MacManus, J. P., 1979. Biochem. Biophys. Res. Commun. 89: 403–409.

    Google Scholar 

  40. Eriksson, S., Thelander, L. and Akerman, M., 1979. Biochemistry 18: 2948–2952.

    Google Scholar 

  41. Cohen, A., Ullman, B. and Martin, D. W. Jr., 1979. J. Biol. Chem. 254: 112–116.

    Google Scholar 

  42. Jackson, R. C., 1982. Proc. 13th Int. Cancer Congress 13: 122.

    Google Scholar 

  43. Reddy, G. P. V. and Pardee, A. B., 1980. Proc. Natl. Acad. Sci. U.S.A. 77: 3312–3316.

    Google Scholar 

  44. Reddy, G. P. V. and Pardee, A. B., 1982. J. Biol. Chem. 257: 12526–12531.

    Google Scholar 

  45. Lenger, K., 1982. Int. J. Biochem. 14: 52–61.

    Google Scholar 

  46. Lenger, K., 1982. Int. J. Biochem. 14: 955–960.

    Google Scholar 

  47. Kucera, R. and Paulus, H., 1982. Arch. Biochem. Biophys. 214: 114–123.

    Google Scholar 

  48. Moore, E. C. and Hurlbert, R. B., 1966. J. Biol. Chem. 241: 4802–4809.

    Google Scholar 

  49. Henderson, J. F., Scott, F. W. and Lowe, J. K., 1980. Pharm. Ther. 8: 573–604.

    Google Scholar 

  50. Murphree, S., Moore, E. C. and Beall, P. T., 1968. Cancer Res. 28: 860–863.

    Google Scholar 

  51. Cory, J. G., Mansell, M. M. and Whitford, T. W. Jr., 1976. Adv. Enz. Reg. 14: 45–62.

    Google Scholar 

  52. Ullman, B., Gudas, L. J., Cohen, A. and Martin, D. W. Jr., 1978. Cell 14: 365–375.

    Google Scholar 

  53. Bjursell, G. and Reichard, P., 1973. J. Biol. Chem. 248: 3904–3909.

    Google Scholar 

  54. Meuth, M. and Green, H., 1974. Cell 3: 367–374.

    Google Scholar 

  55. Gudas, L. J., Ullman, B., Cohen, R. and Martin, D. W. Jr., 1978. Cell 14: 531–538.

    Google Scholar 

  56. Uberti, J., Lightbody, J. J. and Johnson, R. M., 1979. J. Immun. 123: 189–193.

    Google Scholar 

  57. Fox, R. M., Kefford, R. F., Tripp, E. H. and Taylor, I. W., 1981. Cancer Res. 41: 5141–5150.

    Google Scholar 

  58. Henderson, J. F. and Hunting, D., 1981. Nucleosides and Cancer Treatment (Tattersall, M. H. N. and Fox, R. M., eds.), pp. 32–45, Academic Press, Australia.

  59. Krygier, V. and Momparler, R. L., 1971. J. Biol. Chem. 246: 2752–2757.

    Google Scholar 

  60. Chang, C.-H., Brockman, R. W. and Bennett, L. L. Jr., 1982. Cancer Res. 42: 3033–3039.

    Google Scholar 

  61. Skoog, L. and Bjursell, G., 1974. J. Biol. Chem. 249: 6434–6438.

    Google Scholar 

  62. Steinberg, J. A., Otten, M. and Grindey, G. B., 1979. Cancer Res. 39: 4330–4335.

    Google Scholar 

  63. Sato, A. and Cory, J. G., 1981. Bioscience Reports 1: 627–633.

    Google Scholar 

  64. Cory, J. G., 1979. Adv. Enz. Reg. 17: 115–131.

    Google Scholar 

  65. Ikenaka, K., Fukushima, M., Shirasaka, T. and Fujii, S., 1981. Gann 72: 8–18.

    Google Scholar 

  66. Cory, J. G. and Monley, M. F., 1970. Biochem. Biophys. Res. Common. 41: 1480–1485.

    Google Scholar 

  67. Cory, J. G., 1973. Cancer Res. 33: 993–998.

    Google Scholar 

  68. Lewis, W. H., McNaughton, D. R., Goh, S. H., LeJohn, H. B. and Wright, J. A., 1977. J. Cell. Physiol. 93: 345–352.

    Google Scholar 

  69. Lewis, W. H., McNaughton, D. R., LeJohn, H. B. and Wright, J. A., 1976. Biochem. Biophys. Res. Commun. 71: 128–135.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cory, J.G., Sato, A. Regulation of ribonucleotide reductase activity in mammalian cells. Mol Cell Biochem 53, 257–266 (1983). https://doi.org/10.1007/BF00225258

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00225258

Keywords

Navigation