Skip to main content
Log in

Molecular analysis of the expression of transthyretin in intestine and liver from trisomy 18 fetuses

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Human trisomy 18 (Edwards syndrome) provides a model for the role that genes on chromosome 18 play in fetal development. Trisomy 18 occurs in approximately 1 in 3000 live births. Despite its compatibility with life in 5% of cases, prolonged survival is rare. Anomalies involve the urogenital, cardiac, craniofacial and central nervous systems. The abnormalities could be caused by the abnormal expresion of developmentally important genes on chromosome 18. We have investigated the quantity and localisation of the expression of a candidate gene, transthyretin (TTR), on chromosome 18 at the RNA level in intestine and liver tissues from trisomic fetuses and have compared the expression with normal age-matched fetal tissues. The mRNA level of TTR in 10 to 14-week intestine was the same in trisomy 18 and control tissues. However, overexpression was seen for both trisomy 18 liver and intestine at 20–23 weeks. TTR transports both thyroxine and retinol and is therefore important for normal fetal development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aleshire SL, Bradley CA, Richardson LD, Pearl FF (1983) Localisation of human prealbumin in choroid plexus epithelium. J Histochem Cytochem 31:608–612

    Google Scholar 

  • Bartalena L, Robbins J (1992) Variations in thyroid hormone transport proteins and their clinical implications. Thyroid 2:237–245

    Google Scholar 

  • Benacerraf BR, Harlow B, Frigoletto FD (1990) Are choroid plexus cysts an indication for second-trimester amniocentesis? Am J Obstet Gynecol 162: 1001–1006

    Google Scholar 

  • Blake CCF, Geisow JJ, Oatley SJ, Rerat B, Rerat C (1978) Structure of prealbumin: secondary, tertiary and quaternary interactions determined by Fourier refinement at 1.8 Å. J Mol Biol 121:339–356

    Google Scholar 

  • Contempre B, Jauniaux E, Calvo R, Jurkovic D, Campbell S, Morreale de Escobar G (1993) Detection of thyroid hormones in human embryonic cavities during the first trimester of pregnancy. J Clin Endocrinol Metab 77:1719–1722

    Google Scholar 

  • Cremer H, Lange R, Christoph A, Plomann M, Vopper G, Roes J, Brown R, et al (1994) Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature 367:455–459

    Google Scholar 

  • Dickson PW, Aldred AR, Meriting JGT, Marley PD, Sawyer WH, Schreiber G (1987) Thyroxine transport in choroid plexus. J Biol Chem 262: 13907–13915

    Google Scholar 

  • Dickson G, Peck D, Moore SE, Barton CH, Walsh FS (1990) Enhanced myogenesis in NCAM transfected mouse myoblasts. Nature 344:348–351

    Google Scholar 

  • Edwards JH, Cameron AH, Crosse VM, Harnden DG, Wolff OH (1960) A new trisomic syndrome. Lancet 1:787–790

    Google Scholar 

  • Episkopou V, Maeda S, Nishiguchi S, Shimada K, Gaitanaris GA, Gottesman ME, Robertson EJ (1993) Disruption of the transthyretin gene results in mice with depressed levels of plasma retinol and thyroid hormone. Proc Natl Acad Sci USA 90:2375–2379

    Google Scholar 

  • Epstein CJ (1986) The consequences of chromosome imbalance: principles, mechanisms and models. Cambridge University Press, Cambridge, pp 70–7

    Google Scholar 

  • Feinberg AP, Vogelstein B (1984) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Addendum. Anal Biochem 137:266–267

    CAS  PubMed  Google Scholar 

  • Ferlini A, Fini S, Salvi F, Patrosso MC, Vezzoni P, Forabosco A (1992) Molecular strategies in genetic diagnosis of transthyretin-related hereditary amyloidosis. FASEB J 6:2864–2866

    Google Scholar 

  • Fisher JM, Harvey JF, Lindenbaum RH, Boyd PA, Jacobs PA (1993) Molecular studies of trisomy 18. Am J Hum Genet 52: 1139–1144

    Google Scholar 

  • Gitlin D, Perricelli A (1970) Synthesis of serum albumin, prealbumin, a-fetoprotein, a1-antitrypsin and transferring by the human yolk sac. Nature 228:995–997

    Google Scholar 

  • Goodman DS (1984) Vitamin A and retinoids in health and disease. N Engl J Med 310:1023–1031

    Google Scholar 

  • Gray HDA, Gray SES, Horne CHW (1985) Sites of prealbumin production in the human fetus using the indirect immunoperoxidase technique. Virchows Arch A Pathol Anat Histopathol 406:463–473

    Google Scholar 

  • Inada K (1988) Localisation of prealbumin in human eye. Jpn J Ophthalmol 32:438–443

    Google Scholar 

  • Jacobsson B (1989a) Localisation of transthyretin-mRNA and of immunoreactive transthyretin in the human fetus. Virchows Archiv A Pathol Anat Histopathol 415:259–263

    Google Scholar 

  • Jacobsson B (1989b) In situ localisation of transthyretin-mRNA in the adult human liver, choroid plexus and pancreatic islets and in the endocrine tumors of the pancreas and gut. Histochemistry 91:299–304

    Google Scholar 

  • Jones KL (1988) Smith's recognizable patterns of human malformation. 4th edn. Saunders. Philadelphia, pp 16–17

    Google Scholar 

  • Korenberg JR, Kawashima H, Pulst S-M, Ikeuchi T, Ogasawara N, Yamamoto K, Schonberg SA, et al (1990) Molecular definition of a region of chromosome 21 that causes features of the Down syndrome phenotype. Am J Hum Genet 47:236–246

    Google Scholar 

  • Korenberg JR, Bradley C, Disteche CM (1992) Down syndrome: molecular mapping of the congenital heart disease and duodenal stenosis. Am J Hum Genet 50:294–302

    Google Scholar 

  • Legrand J (1986) Thyroid hormone effects on growth and development. In: Hennemann G (ed) Thyroid hormone metabolism. Decker, New York, p 77

    Google Scholar 

  • Liddle CN, Reid WA, Kennedy JS (1985) Immunolocalisation of prealbumin: distribution in normal human tissue. J Pathol 146:107–113

    Google Scholar 

  • Loughna S, Bennett P, Gau G, Nicolaides K, Blunt S, Moore G (1993) Overexpression of esterase D in kidney from trisomy 13 fetuses. Am J Hum Genet 53:810–816

    Google Scholar 

  • Page DC, Harper ME, Love J, Botstein D (1984) Occurrence of a transposition from the X chromosome long arm to the Y chromosome short arm during human evolution. Nature 311:119–123

    Google Scholar 

  • Pangalos C, Theophile D, Sinet PM, Marks A, Stamboulieh-Abazis D (1992) No significant effect of monosomy for distal 21q22.3 on the Down syndrome phenotype in “mirror” duplications of chromosome 21. Am J Hum Genet 51:1240–1250

    Google Scholar 

  • Peck D, Walsh FS (1993) Differential effects of over-expressed neural cell adhesion molecule isoforms on myoblast fusion. J Cell Biol 123:1587–1595

    Google Scholar 

  • Sambrook J, Fritsch EF, Mamatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Sparkes RS, Sasaki H, Mohandas T, Yoshioka K, Klisak I, Sakaki Y, Heinzmann C, Simon MI (1987) Assignment of the prealbumin (PALB) gene (familial amyloidotic polyneuropathy) to human chromosome region 18q11.2-q12.1. Hum Genet 75:151–154

    Google Scholar 

  • Wallace MR, Naylor SL, Kluve-Beckerman B, Long GL, McDonald L, Shows TB, Benson MD (1985) Localization of the human prealbumin gene to chromosome 18. Biochem Biophys Res Commun 129:753–758

    Google Scholar 

  • Warburton D, Byrne J, Canki N (1991) Chromosome abnomalies and prenatal development. An atlas. Oxford University Press, Oxford, p 57

    Google Scholar 

  • Wilson GN, Heller KB, Elterman RD, Schneider NR (1990) Partial trisomy 18 with minimal anomalies: lack of correspondance between phenotypic manifestations and triplicated loci along chromosome 18. Am J Med Genet 36:506–510

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loughna, S., Bennett, P. & Moore, G. Molecular analysis of the expression of transthyretin in intestine and liver from trisomy 18 fetuses. Hum Genet 95, 89–95 (1995). https://doi.org/10.1007/BF00225081

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00225081

Keywords

Navigation