Skip to main content
Log in

Horseradish peroxidase C

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

Horseradish peroxidase C (HRP; ferric) reacts with H2O2 to form Compound I, with an equilibrium constant of about 1014 M−1. Two-step reduction of Compound I to Compound II and further to the ferric enzyme occurs reversibly at Eo′ values of 0.90 and 0.93 V (pH 7.0), respectively. The pH dependence of Eo′ values for each one-electron step, ferrous → ferric → Compound II → Compound I indicates the presence of redox-linked ionization at pKa values of 7.3 in the ferrous state, 11.0 in the ferric and 8.6 in Compound II. Zinc-substituted HRP C is oxidized to its free-radical form at an Eo′ value of 0.74 (pH 6.0). Comparison of oxidized zinc HRP C with Compound I shows that Compound I contains a porphyrin π-cation radical. The flash photolysis study on the NO-ferric HRP C complex clearly indicates that the iron is pentacoordinated in HRP C while it is hexacoordinated in metmyoglobin. From the kinetic analysis of the acid-alkaline conversion of HRP C, the second-order rate constants of the reactions with H+ and HO are estimated to be 1.5 × 1010 and 6.7 × 104 M−1s−1, respectively. The latter rate constant greatly varies with the kind of hemoproteins. In the presence of HRP C and O2, indole-3-acetate is oxidized to its hydroperoxide form, which reacts effectively with HRP C to form Compound I and further converts Compound I to a verdohemoprotein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HRP:

horseradish peroxidase (HRP without subgroup letter denotes a classical preparation consisting of HRP B and HRP C)

EPR:

electron paramagnetic resonance

NMR:

nuclear magnetic resonance

References

  1. Welinder, K. G., 1979. Eur. J. Biochem. 96: 483–502.

    Google Scholar 

  2. Mazza, G. & Welinder, K. G., 1980. Eur. J. Biochem. 108: 481–489.

    Google Scholar 

  3. Takio, K., Titani, K., Ericsson, L. H. & Yonetani, T., 1980. Arch. Biochem. Biophys. 203: 615–629.

    Google Scholar 

  4. Poulos, T. L., Freer, S. T., Alden, R. A., Edwards, S. L., Skogland, U., Takio, K., Eriksson, B., Xuong, N. H., Yonetani, T. & Kraut, J., 1980. J. Biol. Chem. 255: 575–580.

    Google Scholar 

  5. Poulos, T. L. & Kraut, J., 1980. J. Biol. Chem. 255: 8199–8205.

    Google Scholar 

  6. Saunders, B. C., Holmes-Siedle, A. G. & Stark, B. P., 1964. Peroxidase, Butterworths, London and Washington, D.C.

    Google Scholar 

  7. Brill, A. S., 1966. Comprehensive Biochemistry. (Florkin, M. & Stotz, E. H., eds.) Vol. 14 Elsevier, Amsterdam, pp. 447–479.

  8. Yamazaki, I. & Yokota, K., 1973. Mol. Cell. Biochem. 2: 39–52.

    Google Scholar 

  9. Yamazaki, I., 1974. Molecular Mechanism of Oxygen Activation. (Hayashi, O., ed.) Academic Press, New York, pp. 535–558.

  10. Dunford, H. B. & Stillman, J. S., 1976. Coordination Chemistry Reviews 19: 187–251.

    Google Scholar 

  11. Morrison, M. & Schonbaum, G. R., 1976. Ann. Rev. Biochem. 45: 861–888.

    Google Scholar 

  12. Yamazaki, I., Araiso, T., Hayashi, Y., Yamada, H. & Makino, R., 1978. Adv. Biophys. 11: 249–281.

    Google Scholar 

  13. Paul, K. G., 1958. Acta Chem. Scand. 12: 1312–1318.

    Google Scholar 

  14. Shannon, L. M., Kay, E. & Lew, J. Y., 1966. J. Biol. Chem. 241: 2166–2172.

    Google Scholar 

  15. Paul, K. G. & Stigbrand, T., 1970. Acta Chem. Scand. 24: 3607–3617.

    Google Scholar 

  16. Shih, J. H. C., Shannon, L. M., Kay, E. & Lew, J. Y., 1971. J. Biol. Chem. 246: 4546–4551.

    Google Scholar 

  17. Chance, B., 1952. Arch. Biochem. Biophys. 41: 416–424.

    Google Scholar 

  18. George, P., 1953. Biochem. J. 54: 267–276.

    Google Scholar 

  19. Yamazaki, I., Mason, H. S. & Piette, L. H., 1960. J. Biol. Chem. 235: 2444–2449.

    Google Scholar 

  20. George, P., 1953. Science 117: 220–221.

    Google Scholar 

  21. Fergusson, R. R., 1956. J. Amer. Chem. Soc. 78: 741–745.

    Google Scholar 

  22. Hewson, W. D. & Hager, L. P., 1979. J. Biol. Chem. 254: 3182–3186.

    Google Scholar 

  23. Hayashi, Y. & Yamazaki, I., 1979. J. Biol. Chem. 254: 9101–9106.

    Google Scholar 

  24. Hayashi, Y. & Yamazaki, I., 1979. Biochemical and Clinical Aspects of Oxygen. (Caughey, W. S., ed.) Academic Press, New York, pp. 157–165.

  25. Nadezhdin, A. & Dunford, H. B., 1979. Can. J. Biochem. 57: 1080–1083.

    Google Scholar 

  26. Yamazaki, I., 1971. Adv. Biophys. 2: 33–76.

    Google Scholar 

  27. Schonbaum, G. R. & Lo, S., 1972. J. Biol. Chem. 247: 3353–3360.

    Google Scholar 

  28. Jones, P. & Dunford, H. B., 1977. J. theor. Biol. 69: 457–470.

    Google Scholar 

  29. Chance, B., 1951. Adv. Enzymol. 12: 153–190.

    Google Scholar 

  30. Fee, J. A. & Balentine, J. S., 1977. Superoxide and Superoxide Dismutases (Michaelson, A. M., McCord, J. M. & Fridovich, I., eds.) Academic Press, New York, pp. 19–60.

  31. George, P., 1965. Oxidases and Related Redox Systems (King, T. E., Mason, H. S. & Morrison, M., eds.) John Wiley and Sons, New York, pp. 3–36.

  32. Björkstén, F., 1970. Biochim. Biophys. Acta 212: 396–406.

    Google Scholar 

  33. Hollenberg, P. F., Rand-Meier, T. & Hager, L. P., 1974. J. Biol. Chem. 249: 5816–5825.

    Google Scholar 

  34. Taurog, A., 1970. Arch. Biochem. Biophys. 139: 212–220.

    Google Scholar 

  35. Ohtaki, S., Nakagawa, H., Kimura, S. & Yamazaki, I., 1981. J. Biol. Chem. 256: 805–810.

    Google Scholar 

  36. Harrison, J. F. & Schultz, J., 1976. J. Biol. Chem. 251: 1371–1374.

    Google Scholar 

  37. Dolphin, D., Forman, A., Borg, D. C., Fajer, J. & Felton, R. H., 1971. Proc. Nat. Acad. Sci. USA 68: 614–618.

    Google Scholar 

  38. Fajer, J., Borg, D. C., Forman, A., Dolphin, D. & Felton, R. H., 1970. J. Am. Chem. Soc. 92: 3451–3459.

    Google Scholar 

  39. Forman, A., Borg, D. C., Felton, R. H. & Fajer, J., 1971. J. Am. Chem. Soc. 93: 2790–2792.

    Google Scholar 

  40. Maeda, Y. & Morita, Y., 1967. Biochem. Biophys. Res. Commun. 29: 680–685.

    Google Scholar 

  41. Moss, T. H., Ehrenberg, A. & Bearden, A. J., 1969. Biochemistry 8: 4159–4162.

    Google Scholar 

  42. Morishima, I. & Ogawa, S., 1978. Biochemistry 17: 4384–4388.

    Google Scholar 

  43. La Mar, G. N. & de Ropp, J. S., 1980. J. Am. Chem. Soc. 102: 395–397.

    Google Scholar 

  44. Loew, G. H. & Herman, Z. S., 1980. J. Am. Chem. Soc. 102: 6173–6174.

    Google Scholar 

  45. Theorell, H. & Ehrenberg, A., 1952. Arch. Biochem. Biophys. 41: 442–461.

    Google Scholar 

  46. Felton, R. H., Romans, A. Y., Yu, N. T. & Schonbaum, G. R., 1976. Biochim. Biophys. Acta 434: 82–89.

    Google Scholar 

  47. Schulz, C. E., Devaney, P. W., Winkler, H., Debrunner, P. G., Doan, N., Chiang, R., Rutter, R. & Hager, L. P., 1979. FEBS Lett. 103: 102–105.

    Google Scholar 

  48. Mansuy, D., Lange, M. & Chottard, J. C., 1979. J. Am. Chem. Soc. 101: 6437–6439.

    Google Scholar 

  49. Kaneko, Y., Tamura, M. & Yamazaki, I., 1980. Biochemistry 19: 5795–5799.

    Google Scholar 

  50. George, P. & Irvine, D. H., 1955. Biochem. J. 60: 596–604.

    Google Scholar 

  51. Theorell, H., 1947. Adv. Enzymol. 7: 265–303.

    Google Scholar 

  52. Harbury, H. A., 1957. J. Biol. Chem. 225: 1009–1024.

    Google Scholar 

  53. Yamada, H. & Yamazaki, I., 1974. Arch. Biochem. Biophys. 165: 728–738.

    Google Scholar 

  54. Yamada, H., Makino, R. & Yamazaki, I., 1975. Arch. Biochem. Biophys. 169: 344–353.

    Google Scholar 

  55. Yamada, H. & Yamazaki, I., 1975. Arch. Biochem. Biophys. 171: 737–744.

    Google Scholar 

  56. Yamazaki, L, Hayashi, Y., Makino, R. & Yamada, H., 1976. Iron and Copper Proteins (Yasunobu, K. T., Mower, H. F. & Hayaishi, O., eds.) Plenum, New York, pp. 382–388.

  57. Dunford, H. B., 1974. Physiol. Vég. 12: 13–23.

    Google Scholar 

  58. Hayashi, Y. & Yamazaki, I., 1978. Arch. Biochem. Biophys. 190: 446–453.

    Google Scholar 

  59. Ricard, J., Mazza, G. & Williams, R. J. P., 1972. Eur. J. Biochem. 28: 566–578.

    Google Scholar 

  60. Conroy, C. W., Tyma, P., Daum, P. H. & Erman, J. E., 1978. Biochim. Biophys. Acta 537: 62–69.

    Google Scholar 

  61. Botelho, L. H., Friend, S. H., Matthew, J. B., Lehman, L. D. Hanania, G. I. H. & Gurd, F. R. N., 1978. Biochemistry 17: 5197–5205.

    Google Scholar 

  62. Teraoka, J. & Kitagawa, T., 1980. Biochem. Biophys. Res. Commun. 93: 694–700.

    Google Scholar 

  63. Teraoka, J. & Kitagawa, T., 1981. J. Biol. Chem. 256: 3969–3977.

    Google Scholar 

  64. Traylor, T. G., Mincey, T., Berzinis, A. & White, D., 1981. Oxidases and Related Redox Systems III (King, T. E., Mason, H. S. & Morrison, M., eds.) in press.

  65. La Mar, G. N. & de Ropp, J. S., 1979. Biochem. Biophys. Res. Commun. 90: 36–41.

    Google Scholar 

  66. Schonbaum, G. R., Welinder, K. & Smillie, L. B., 1971. Probes of Structure and Function of Macromolecules and Membranes, Vol. II, Academic Press, New York, pp. 533–543.

    Google Scholar 

  67. Keilin, D. & Hartree, E. F., 1951. Biochem. J. 49: 88–104.

    Google Scholar 

  68. Epstein, N. & Schejter, A., 1972. FEBS Lett. 25: 46–48.

    Google Scholar 

  69. Kihara, H., Saigo, S., Iizuka, T. & Ishimura, Y., 1978. Biochim. Biophys. Acta 533: 112–119.

    Google Scholar 

  70. Morishima, I., Ogawa, S., Inubushi, T., Yonezawa, T. & Iizuka, T., 1977. Biochemistry 16: 5109–5115.

    Google Scholar 

  71. Araiso, T. & Yamazaki, I., 1978. Biochemistry 17: 942–946.

    Google Scholar 

  72. Job, D., Ricard, J. & Dunford, H. B., 1977. Arch. Biochem. Biophys. 179: 95–99.

    Google Scholar 

  73. Giacometti, G. M., Ros, A. D., Antonini, E. & Brunori, M., 1975. Biochemistry 14: 1584–1588.

    Google Scholar 

  74. Iizuka, T., Ogawa, S., Inubushi, T., Yonezawa, T. & Morishima, I., 1976. FEBS Lett. 64: 156–158.

    Google Scholar 

  75. Lanir, A. & Schejter, A., 1975. Biochem. Biophys. Res. Commun. 62: 199–203.

    Google Scholar 

  76. Vuk-Pavlovic, S. & Benko, B., 1975. Biochem. Biophys. Res. Commun. 66: 1154–1159.

    Google Scholar 

  77. Gupta, R. K., Mildvan, A. S. & Schonbaum, G. R., 1980: Arch. Biochem. Biophys. 202: 1–7.

    Google Scholar 

  78. Gupta, R. K., Mildvan, A. S. & Schonbaum, G. R., 1979: Biochem. Biophys. Res. Commun. 89: 1334–1340.

    Google Scholar 

  79. Kobayashi, K., Tamura, M., Hayashi, K., Hori, H. & Morimoto, H., 1980. J. Biol. Chem. 255: 2239–2242.

    Google Scholar 

  80. Tamura, M., Kobayashi, K., Hayashi, K. & Hori, H., 1981. Oxidases and Related Redox Systems (King, T. E., Mason, H. S. & Morrison, M., eds.) in press.

  81. Ray, P. M., 1958. Ann. Rev. Plant Physiol. 9: 81–118.

    Google Scholar 

  82. Galston, A. W. & Purves, W. K., 1960. Ann. Rev. Plant Physiol. 11: 239–276.

    Google Scholar 

  83. Fox, L. R., Purves, W. K. & Nakada, H. I., 1965. Biochemistry 12: 2754–2763.

    Google Scholar 

  84. Miller, R. W. & Parups, E. V., 1971. Arch. Biochem. Biophys. 143: 276–285.

    Google Scholar 

  85. Gelinas, D. A., 1973. Plant Physiol. 51: 967–972.

    Google Scholar 

  86. Ricard, J. & Job, D., 1974. Eur. J. Biochem. 44: 359–374.

    Google Scholar 

  87. Ray, P. M., 1960. Arch. Biochem. Biophys. 87: 19–30.

    Google Scholar 

  88. Hinman, R. L. & Lang, L., 1965. Biochemistry 4: 144–158.

    Google Scholar 

  89. Yamazaki, H. & Yamazaki, I., 1973. Arch. Biochem. Biophys. 154: 147–159.

    Google Scholar 

  90. Kokkinakis, D. M. & Brooks, J. L., 1979. Plant Physiol. 64: 220–223.

    Google Scholar 

  91. Nakajima, R. & Yamazaki, I., 1979. J. Biol. Chem. 254: 872–878.

    Google Scholar 

  92. Ray, P. M. & Thimann, K. V., 1956. Arch. Biochem. Biophys. 64: 175–192.

    Google Scholar 

  93. Yamazaki, I., Sano, H., Nakajima, R. & Yokota, K., 1968. Biochem Biophys. Res. Commun. 31: 932–937.

    Google Scholar 

  94. Yamazaki, H., Ohishi, S. & Yamazaki, I., 1970. Arch. Biochem. Biophys. 136: 41–46.

    Google Scholar 

  95. Nakajima, R. & Yamazaki, I., 1980. J. Biol. Chem. 255: 2067–2071.

    Google Scholar 

  96. Schonbaum, G. R., 1973. J. Biol. Chem. 248: 502–511.

    Google Scholar 

  97. Leigh, J. S., Maltempo, M. M., Ohlsson, P. I. & Paul, K. G., 1975. FEBS Lett. 51: 304–308.

    Google Scholar 

  98. Schejter, A., Lanir, A. & Epstein, N., 1976. Arch. Biochem. Biophys. 174: 36–44.

    Google Scholar 

  99. Paul, K. G. & Ohlsson, P.I., 1978. Acta Chem. Scand. B32: 395–404.

    Google Scholar 

  100. Burns, P. S., Williams, R. J. P. & Wright, P. E., 1975. J. C. S. Chem. Comm. 795–796.

  101. Morishima, I., Ogawa, S., Inubushi, T. & Yonezawa, T., 1977. FEBS Lett. 80: 177–181.

    Google Scholar 

  102. Morishima, I. & Ogawa, S., 1979. J. Biol. Chem. 254: 2814–2820.

    Google Scholar 

  103. Marklund, S., Ohlsson, P. I., Opara, A. & Paul, K. G., 1974. Biochim. Biophys. Acta 350: 304–313.

    Google Scholar 

  104. Reimann, L. & Schonbaum, G. R., 1979. Methods Enzymol. 51: 514–521.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamazaki, I., Tamura, M. & Nakajima, R. Horseradish peroxidase C. Mol Cell Biochem 40, 143–153 (1981). https://doi.org/10.1007/BF00224608

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00224608

Keywords

Navigation