Skip to main content
Log in

Why are some genetic diseases common?

Distinguishing selection from other processes by molecular analysis of globin gene variants

  • Review Article
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Various processes (selection, mutation, migration and genetic dirft) are known to determine the frequency of genetic disease in human populations, but so far it has proved almost impossible to decide to what extent each is responsible for the presence of a particular genetic disease. The techniques of gene and haplotype analysis offer new hope in addressing this issue, and we review relevant studies of three haemoglobinopathies: sickle cell anaemia, and α and β thalassaemia. We show how for each disease it is possible to recognize a pattern of regionally specific mutations, found in association with one or a few haplotypes, that is best explained as the result of selection; other patterns are due to population migration and genetic drift. However, we caution that such conclusions can be drawn in special circumstances only. In the case of the haemoglobinopathies it is possible because a selective agent (malaria) was already suspected, and the investigations could be carried out in relatively genetically homogenous populations whose migratory histories are known. Moreover, some data reviewed here suggest that gene conversion and the haplotype composition of a population may affect the frequency of a mutation, making interpretation of gene frequencies difficult on the basis of standard population genetics theory. Hence attempts to use the same approaches with other genetic diseases are likely to be frustrated by a lack of suitably untrammelled populations and by difficulties accounting for poorly understood genetic processes. We conclude that although this combination of molecular and population genetics is successful when applied to the study of haemoglobinopathies, it may not be so easy to apply it to the study of other genetic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramson RK, Rucknagel DL, Shreffler DL, Saave JJ (1979) Homozygous HbJTongariki:evidence for only one alpha chain structural locus in Melanesians. Science 169:194–196

    Google Scholar 

  • Akar N, Cavar AO, Dessi E, Loi A, Pirastu M, Cao A (1987) β thalassaemia mutations in the Turkish population. J Med Genet 24:378–381

    Google Scholar 

  • Allen J, Gosden C, Jones R, White PJ (1988) Pleistocene dates for the human occupation of New Ireland, nothern Melanesia. Nature 331:707–709

    Google Scholar 

  • Allison AC (1964) Polymorphism and natural selection in human populations. Cold Spring Harbor Symp Quant Biol 29:137–149

    Google Scholar 

  • Amselem S, Nunes V, Vidaud M, Estivill X, Wong C, d'Auriol L, Vidaud D, Galibert F, Baiget M, Goossens M (1988) Determination of the spectrum of β thalassemia genes in Spain by dot-blot analysis of amplified β globin DNA. Am J Hum Genet 43:95–100

    Google Scholar 

  • Antonarakis SE, Boehm CD, Giardina PJC, Kazazian HH (1982) Non-random association of polymorphic restriction sites in the β globin gene cluster. Proc Natl Acad Sci USA 79:137–141

    Google Scholar 

  • Antonarakis SE, Boehm CD, Serjeant GR, Theisen CE, Dover GJ, Kazazian HH (1984) Origin of the βs globin gene in Blacks: the contribution of recurrent mutation or gene conversion or both. Proc Natl Acad Sci USA 81:853–856

    Google Scholar 

  • Antonarakis SE, Kang J, Lam VMS, Tam JWO, Li AMC (1988) Molecular characterisation of β globin gene mutations in patients with β thalassaemia intermedia in South China. Br J Haematol 70:357–361

    Google Scholar 

  • Athanassiadou A, Zarkadis I, Papahadjopoulou A, Maniatis GM (1987) DNA haplotype heterogeneity of β thalassaemia in Greece: feasibility of prenatal diagnosis. Br J Haematol 66:379–383

    Google Scholar 

  • Aulehla-Scholz C, Basaran S, Agaoglu L, Arcasoy A, Holzgreve W, Miny P, Ridolfi F, Horst J (1990) Molecular basis of β thalassaemia in Turkey: detection of rare mutations by direct sequencing. Hum Genet 84:195–197

    Google Scholar 

  • Avigad S, Cohen BE, Bauer S, Schwartz G, Frydman M, Woo SLC, Niny Y, Shiloh Y (1990) A single origin of phenylketonuria in Yemenite Jews. Nature 344:168–170

    Google Scholar 

  • Bellwood PS (1989) The colonization of the Pacific: some current hypotheses. In: Hill AVS, Serjeantson SW (eds) The colonization of the Pacific: a genetic trail. Oxford University Press. Oxford, pp1–59

    Google Scholar 

  • Berthelon M, Caillaud C, Rey F, Labrune P, Melle D, Feingold J, Frezal J, Briard M-L, Farriaux J-P, Guibaud P, Journel H, Le Marec B, Maurin N, Nivelon J-L, Plauchu H, Saudubray J-M, Tron P, Rey J, Munnich A, Lyonnet S (1991) Spectrum of phenylketonuria mutations in Western Europe and North Africa, and their relation to polymorphic DNA haplotypes at the phenylalanine hydroxylase locus. Hum Genet 86:355–358

    Google Scholar 

  • Black RH (1954) Some aspects of malaria in the New Hebrides. South Pacific Commission Technical Paper No 60

  • Borts RH, Haber JE (1987) Meiotic recombination in yeast: alteration by multiple heterozygosities. Science 237:1459–1463

    Google Scholar 

  • Borts RH, Haber JE (1989) Length and distribution of meiotic gene conversion tracts and crossovers in Saccharomyces cerevisiae. Genetics 123:69–80

    Google Scholar 

  • Bowcock AM, Kidd JR, Mountain JR, Kidd KK, Cavalli-Sforza LL (1991) Drift, admixture and selection in human evolution: a study with DNA polymorphisms. Proc Natl Acad Sci USA 88:839–843

    Google Scholar 

  • Bowden DK, Hill AVS, Higgs DR, Oppenheimer SJ, Weatherall DJ, Clegg JB (1987) Different hematologic phenotypes are associated with leftward (-α4.2) and rightward (-⇌3. 7) α thalassaemia deletions. J Clin Invest 79:39–43

    Google Scholar 

  • Brockway RW (1983) The origin and dispersal of the Polynesians: some recent evidence. J Hum Biol 12:501–503

    Google Scholar 

  • Brown JM, Thein SL, Mar KM, Weatherall DJ (1989) The spectrum of β thalassaemia in Burma. Prog Clin Biol Res 316B:161–169

    Google Scholar 

  • Brown PJ (1981) New considerations on the distribution of malaria, thalassaemia and glucose-6-phosphate dehydrogenase deficiency in Sardinia. Hum Biol 53:367–382

    Google Scholar 

  • Camaschella C, Saglio G, Serra A, Guerrasio A, Bertero T, Rege-Cambrin G, Loi A, Pirastu M (1988) Molecular characterisation of thalassaemia intermedia in Italy. Birth Defects 23:111–116

    Google Scholar 

  • Carestia C, Pagano L, Fioretti G, Mastrobuoni A (1987) β thalassaemia in Campania: DNA polymorphism analysis in βA and βthal chromosomes and its usefulness in prenatal diagnosis. Br J Haematol 67:231–234

    Google Scholar 

  • Cavalli-Sforza LL, Piazza A, Menozzi P, Mountain J (1988) Reconstruction of human evolution: bringing together genetic, archaeological and linguistic data. Proc Natl Acad Sci USA 85:6002–6006

    Google Scholar 

  • Cavalli-Sforza LL, Wilson AC, Cantor CR, Cook-Deegan RM, King MC (1991) Call for a worldwide survey of human genetic divesity: a vanishing opportunity of the human genome project. Genomics 11:490–491

    Google Scholar 

  • Chakravarti A, Buetow KH, Antonarakis SE, Waber PG, Boehm CD, Kazazian HH (1986) Nonuniform recombination within the human β globin gene cluster. Am J Hum Genet 36:1239–1258

    Google Scholar 

  • Chan V, Chan TK, Leung NK, Kan YW, Todd D (1986) Characteristics and distribution of β thalassaemia haplotypes in South China. Hum Genet 73:23–26

    Google Scholar 

  • Chan V, Chan TK, Chehab FF, Todd D (1987) Distribution of β thalassemia mutations in South China and their association with haplotypes. Am J Hum Genet 41:678–685

    Google Scholar 

  • Chebloune Y, Pagnier J, Trabuchet G, Faure C, Verdier G, Labie D, Nigon V (1988) Structural analysis of the 5′ flanking region of the β globin gene in African sickle cell anemia patients: further evidence for three origins of the sickle mutation in Africa. Proc Natl Acad Sci USA 85:4431–4435

    Google Scholar 

  • Chehab FF, Honig GR, Kan YW (1986) Spontaneous mutation in β-thalassaemia producing the same nucleotide substitution as that in a common hereditary form. Lancet I:3–5

    Google Scholar 

  • Chehab FF, Der Kaloustian V, Khouri FP, Deeb SS, Kan YW (1987) The molecular basis of β thalassemia in Lebanon: application to prenatal diagnosis. Blood 69:1141–1145

    Google Scholar 

  • Cheng T-C, Orkin SH, Antonarakis SE, Potter MJ, Sexton JP, Markham AF, Giardina PJV, Li A, Kazazian HH (1984) β thalassemia in Chinese: Use of in vivo RNA analysis and oligonucleotide hybridisation in systematic characterisation of molecular defects. Proc Natl Acad Sci USA 81:2821–2825

    PubMed  Google Scholar 

  • Chibani J, Vidard M, Duquesnoy P, Berge-Lefranc JL, Pirastu M, Ellouze F, Rosa J, Goossens M (1988) The peculiar spectrum of β thalassaemia genes in Tunisia. Hum Genet 78:190–192

    Google Scholar 

  • Coutinho-Gomes MP, Gomes da Costa MG, Braga LB, Cordeiro-Ferreira NT, Loi A, Pirastu M, Cao A (1988) β-thalassaemia mutations in the Portuguese population. Hum Genet 78:13–15

    Google Scholar 

  • Daiger SP, Chakraborty R, Reed L, Fekete G, Schuler D, Berenssi G, Nasz I, Brdicka R, Kamaryt J, Pijackova A, Moore S, Sullivan S, Woo SLC (1989) Polymorphic DNA haplotypes at the phenylalanine hydroxylase (PAH) locus in European families with phenylketonuria (PKU). Am J Hum Genet 45:310–318

    Google Scholar 

  • Deisseroth A, Nienhuis A, Turner P, Velez R, Anderson WF, Ruddle F, Lawrence J, Creagan R, Kucherlapati (1977) Localization of the human α-globin structural gene to chromosome 16 in somatic cell hybrids by molecular hybridization. Cell 12:205–218

    Google Scholar 

  • Deisseroth A, Nienhuis A, Lawrence J, Giles R, Turner P, Ruddle FH (1978) Chromosomal localization of human β globin gene on human chromosome 11 in somatic cell hybrids. Proc Natl Acad Sci USA 75:1456–1460

    Google Scholar 

  • Del Senno L, Pirastu M, Barbieri R, Bernardi F, Buzzoni D, Manchietti G, Perrotta C, Vullo C, Kan YW, Conconi F (1985) β thalassaemia in the Po river delta region (northern Italy): genotype and β globin synthesis. J Med Genet 22:54–58

    Google Scholar 

  • Di Marzo R, Dowling CE, Wong C, Maggio A, Kazazian HH (1988) Spectrum of β thalassaemia mutations in Sicily. Br J Haematol 69:393–397

    Google Scholar 

  • Diaz-Chico TC, Yang KG, Stoming TA, Efremov DG, Kutlar A, Kutlar F, Aksoy M, Altay C, Gurgey A, Kilinc Y, Huisman THJ (1988) Mild and severe β-thalassemia among homozygotes in Turkey: Identification of the types by hybridisation of amplified DNA with synthetic probes. Blood 71:248–251

    Google Scholar 

  • Dimovska A, Efremov DG, Jankovic L, Juricic D, Zisovski N, Stojanovski N, Nikolov N, Petkov GT, Reese AL, Stoming TA, Efremov GD, Huisman THJ (1990) β thalassaemia in Yugoslavia. Hemoglobin 14:15–24

    Google Scholar 

  • El-Hazmi MAF (1990) Beta globin gene haplotypes in the Saudi sickle cell anaemia patients. Hum Hered 40:177–186

    Google Scholar 

  • Embury SH, Miller JA, Dozy AM, Kan YW, Chan V, Todd D (1980) Two different molecular organizations account for the single α-globin gene of the α-thalassaemia-2 genotype. J Clin Invest 66:1319–1325

    Google Scholar 

  • Flint J, Hill AVS, Bowden DK, Oppenheimer SJ, Sill PR, Serjeantson SW, Bana-Koiri J, Bhatia K, Alpers MP, Boyce AJ, Weatherall DJ, Clegg JB (1986) High frequencies of α-thalassaemia are the result of natural selection by malaria. Nature 321:744–749

    Google Scholar 

  • Flint J, Boyce AJ, Martinson JJ, Clegg JB (1989) Population bottlenecks in Polynesia revealed by minisatellites. Hum Genet 83:252–263

    Google Scholar 

  • Fucharoen S, Winichagoon P (1987) Haemoglobinopathies in Southeast Asia. Hemoglobin 11:65–88

    Google Scholar 

  • Gerhard DS, Kidd KK, Kidd JR, Egeland JA, Housman DE (1984) Identification of a recent recombination event within the human β-globin gene cluster. Proc Natl Acad Sci USA 81:7875–7879

    Google Scholar 

  • Giampaolo A, Mavilio F, Massa A, Gabbianelli M, Guerriero R, Sposi NN, Care A, Cianciulli P, Tentori L, Marinucci M (1984) Molecular heterogeneity of beta thalassaemia in the Italian population. Br J Haematol 56:79–85

    Google Scholar 

  • Giles E, Wybar S, Walsh RJ (1970) Microevolution in New Guinea: additional evidence for genetic drift. Archaeol Phys Anthropol Oceania 5:60–72

    Google Scholar 

  • Groube L, Chappell J, Muke J, Price D (1986) A 40,000 year old human occupation site at Huon Peninsula, Papua New Guinea. Nature 324:453–455

    Google Scholar 

  • Haldane JBS (1948) The rate of mutation of human genes. (Proceedings of the 8th International Congress on Genetics) Hereditas [Suppl] 35:267–273

    Google Scholar 

  • Hertzberg MS, Mickleson KNP, Trent RJ (1988) α-globin gene haplotypes in Polynesians: their relationships to population groups and gene rearrangements. Am J Hum Genet 43:971–977

    Google Scholar 

  • Hess JF, Schmid CW, Shen C-KJ (1984) A gradient of sequence divergence in the human adult α-globin duplication units. Science 226:67–70

    Google Scholar 

  • Higgs Dr, Hill AVS, Bowden DK, Weatherall DJ, Clegg JB (1984) Independent recombination events between the duplicated human α globin genes; implications for their concerted evolution. Nucleic Acids Res 12:6965–6977

    Google Scholar 

  • Higgs DR, Wainscoat JS, Flint J, Hill AVS, Thein SL, Nicholls RD, Teal H, Ayyub H, Peto TEA, Falusi AG, Jarman AP, Clegg JB, Weatherall DJ (1986) Analysis of the human α-globin gene cluster reveals a highly informative genetic locus. Proc Natl Acad Sci USA 83:5165–5169

    Google Scholar 

  • Higgs DR, Vickers MA, Wilkie AOM, Pretorius I-M, Jarman AP, Weatherall DJ (1989) A review of the molecular genetics of the human α-globin gene cluster. Blood 73:1081–1104

    Google Scholar 

  • Hill AVS, Bowden DK, Trent RJ, Higgs DR, Oppenheimer SJ, Thein SL, Mickleson KNP, Weatherall DJ, Clegg JB (1985a) Melanesians and Polynesians share a unique α-thalassemia mutation. Am J Hum Genet 37:571–580

    Google Scholar 

  • Hill AVS, Nichols RD, Thein SL, Higgs DR (1985b) Recombination within the human ζ globin gene locus: a common ζζ chromosome produced by gene conversion of the ζ gene. Cell 42:809–819

    Google Scholar 

  • Hill AVS, Gentile B, Bonnardot JM, Roux JK, Weatherall DJ, Clegg JB (1987) Polynesian origins and affinities: globin gene variants in Eastern Polynesia. Am J Hum Genet 40:453–463

    Google Scholar 

  • Hill AVS, O'Shaughnessy DF, Clegg JB (1989) Haemoglobin and globin gene variants in the Pacific. In: Hill AVS, Serjeantson SW (eds) The colonization of the Pacific: a genetic trail. Oxford University Press, Oxford, pp 246–285

    Google Scholar 

  • Hill AVS, Allsop CEM, Kwiatkowski D, Anstey NM, Twumasi P, Rowe PA, Bennett S, Brewster D, McMichael AJ, Greenwood B (1991) Common West African HLA antigens are associated with protection from severe malaria. Nature 352:595–600

    Article  CAS  PubMed  Google Scholar 

  • Huang S-Z, Kazazian HH, Waber PG, Lo WHY, Cai R-L, Wang MQ (1985) β thalassaemia in Chinese: analysis of polymorphic restriction site haplotypes in the β-globin gene cluster. Chin Med J 98:881–886

    Google Scholar 

  • Hundrieser J, Sanguansermsri T, Papp T, Laig M, Flatz G (1988) β Globin gene linked DNA haplotypes and frameworks in three south east Asian populations. Hum Genet 80:90–94

    Google Scholar 

  • Imaizumi Y, Morton NE (1970) Isolation by distance in New Guinea and Micronesia. Archaeol Phys Anthropol Oceania 5:218–235

    Google Scholar 

  • Kalaydjieva L, Eigel A, Horst J (1989) The molecular basis of β thalassaemia in Bulgaria. J Med Genet 26:614–618

    Google Scholar 

  • Kazazian HH (1990) The thalassaemia syndromes: molecular basis and prenatal diagnosis. Semin Hematol 27:209–228

    Google Scholar 

  • Kazazian HH, Orkin SH, Antonarakis SE, Sexton JP, Boehm CD, Goff SC, Waber PG (1984a) Molecular characterisation of seven β thalassaemia mutations in Asian Indians. EMBO J 3:593–596

    Google Scholar 

  • Kazazian HH, Orkin SH, Markham AF, Chapman CR, Youssoufian H, Waber PG (1984b) Quantification of the close association between DNA haplotypes and specific β-thalassaemia mutations in Mediterraneans. Nature 310:152–154

    Google Scholar 

  • Kazazian HH, Dowling CE, Waber PS, Huang S, Lo WHY (1986a) The spectrum of β thalassemia genes in China and Southeast Asia. Blood 68:964–966

    Google Scholar 

  • Kazazian HH, Orkin SH, Boehm CD, Goff SC, Wong C, Dowling CE, Newburger PE, Knowlton RG, Brown V, Donis-Keller H (1986b) Characterisation of a spontaneous mutation to a β thalassemia allele. Am J Hum Genet 38:860–867

    Google Scholar 

  • Kazazian HH, Dowling CE, Waber PG, Huang S-Z, Lo WHY, Li A, Jam JWO, Kang K, Antonarakis SE (1987) Molecular characterisation of β thalassemia major and β thalassemia intermedia in China and Southeast Asia. In: Stamatoyannopoulos G, Nienhuis AW (eds) Developmental control of globin gene expression. Liss, New York, pp 401–412

    Google Scholar 

  • Ketterling RP, Bottema CDK, Phillips JA, Sommer SS (1991) Evidence that descendants of three founders constitute about 25% of hemophilia B in the United States. Genomics 10:1093–1096

    Google Scholar 

  • Kirch PV (1986) Rethinking east Polynesian prehistory. J Polynesian Soc 95:9–40

    Google Scholar 

  • Koeberl DD, Bottema CDK, Ketterling RP, Bridge PJ, Lillicrap DP, Sommer SS (1990) Mutations causing hemophilia B: direct estimates of the underlying rates of spontaneous germ-line transitions, transversions and deletions in a human gene. Am J Hum Genet 47:202–217

    Google Scholar 

  • Konecki DS, Lichter-Konecki U (1991) The phenylketonuria locus: current knowledge about alleles and mutations of the phenylalanine hydroxylase gene in various populations. Hum Genet 87:377–388

    Google Scholar 

  • Kulozik AE, Wainscoat JS, Serjeant GR, Al-Awamy B, Essan F, Falusi A-G, Haque SK, Hilali AM, Kate S, Ranasinghe WACP, Weatherall DJ (1986) Geographical survey of βs-globin gene haplotypes: evidence for an independent Asian origin of the sickle cell mutation. Am J Hum Genet 39:239–244

    Google Scholar 

  • Labie D, Srinivas R, Dunda O, Dode C, Lapoumeroulie C, Devi V, Ramasami K, Elion J, Ducrocq R, Krishnamoorthy R, Nagel RL (1990) Haplotypes in tribal Indians bearing the sickle gene: evidence for the unicentric origin of the βs mutation and the unicentric origin of the tribal populations in India. Hum Biol 61:479–491

    Google Scholar 

  • Laig M, Sanguansermsi T, Wiangnon S, Hundrieser J, Pape M, Flatz G (1989) The spectrum of β thalassemia mutations in northern and northeastern Thailand. Hum Genet 84:47–50

    Google Scholar 

  • Laig M, Pape M, Hundrieser J, Flatz G (1990) Mediterranean types of β thalassaemia in the German population. Hum Genet 85:135–137

    Google Scholar 

  • Lambert SM (1949) Malaria incidence in Australia and the South Pacific. In: Boyd MF (ed) Malariology. Saunders, Philadelphia, pp 820–830

    Google Scholar 

  • Lapoumeroulie C, Dunda O, Ducrocq R, Trabuchet G, Mony-Lobe M, Bodo JM, Carnevale P, Labie D, Elion J, Krishnamoorthy (1992) A novel sickle cell mutation of yet another origin in Africa: the Cameroon type. Hum Genet 89:333–337

    Google Scholar 

  • Li H, Zhao X, Qin F, Li H, Li L, He X, Chang X, Li Z, Liang K, Ying F, Chang F, Chang W, Wong R, Yang F, Li F, Zhang T, Tian R, Webber BB, Wilson JB, Huisman THJ (1990) Abnormal hemoglobins in the silk road region of China. Hum Genet 86:231–235

    Google Scholar 

  • Lie-Injo LE, Pawson IG, Solair A (1985) High frequency of triplicated α globin loci and absence or low frequency of α thalassaemia in Polynesian Samoans. Hum Genet 70:116–118

    Google Scholar 

  • Lie-Injo LE, Cai S-P, Wahidisat I, Moeslichan S, Lim LM, Evangelista L, Doherty M, Kan YW (1989) β thalassemia mutations in Indonesia and their linkage to β haplotypes. Am J Hum Genet 45:971–975

    Google Scholar 

  • Liu SR, Zuo QH (1986) Newborn screening for phenylketonuria in eleven districts. Chin Med J 99:113–118

    Google Scholar 

  • Liu VWS, Woo YK, Lam VMS, Huang CH, Chan AS, Lam STS, Wong HW, Tam JWO (1988) Molecular studies of β thalassaemia DNA of Chinese patients. Birth Defects 23:87–92

    Google Scholar 

  • Livingstone FB (1985) Frequencies of haemoglobin variants. Oxford University Press, Oxford

    Google Scholar 

  • Livingstone FB (1989) Simulation of the diffusion of the β-globin variants in the Old World. Hum Biol 61:297–309

    Google Scholar 

  • Lynch J, Tate VE, Weatherall DJ, Fucharoen S, Tanphaichitr VS, Isarangkura P, Seksam P, Laosombat V, Kulapongs P, Wasi P (1988) Molecular basis of β-thalassaemia in Thailand. Birth Defects 23:71–79

    Google Scholar 

  • Maggio A, Acuto S, Lo Gioco P, DiMarzo R, Giambona A, Sammarco P, Caronia F (1986) βA and βthal DNA haplotypes in Sicily. Hum Genet 72:229–230

    Google Scholar 

  • Maggio A, Acuto S, DiMarzo R, LoGioco P, Giambona A, Sammarco P, Siciliano S, Caronia F (1988) β thalassaemia mutations in Sicily. Birth Defects 23:107–110

    Google Scholar 

  • Michelson AM, Orkin SH (1983) Boundaries of gene conversion within the duplicated α-globin genes. Concerted evolution by segmental recombination. J Biol Chem 268:15245–15254

    Google Scholar 

  • Monteiro C, Rueff J, Falcao AB, Portugal S, Weatherall DJ, Kulozik AE (1989) The frequency and origin of the sickle cell mutation in the district of Coruche/Portugal. Hum Genet 82:255–258

    Google Scholar 

  • Nagel RL, Ranney HM (1990) Genetic epidemiology of structural mutations of the β globin gene. Semin Hematol 27:342–359

    Google Scholar 

  • Novelletto A, Hafez M, Deidda G, Di Rienzo A, Felicetti L, El-Tahan H, El-Morsi Z, El-Ziny M, Al-Tonbary Y, Sittien A, Terrenato L (1990) Molecular characterization of β thalassaemia mutations in Egypt. Hum Genet 85:271–274

    Google Scholar 

  • Nurse GT (1985) The pace of human selective adaptation to malaria. J Hum Evol 14:319–326

    Google Scholar 

  • Ojwang PJ, Ogada T, Beris P, Hattori Y, Lanclos KD, Kutlar A, Kutlar F, Huisman THJ (1987) Haplotypes and α globin gene analyses in sickle cell anaemia patients from Kenya. Br J Haematol 65:211–215

    Google Scholar 

  • Old JM, Petrou M, Modell B, Weatherall DJ (1984) Feasibility of antenatal diagnosis of β thalassaemia by DNA polymorphisms in Asian Indian and Cypriot populations. Br J Haematol 57:255–263

    Google Scholar 

  • Old JM, Heath C, Fitches A, Thein SL, Jeffreys AJ, Petrou M, Modell B, Weatherall DJ (1986) Meiotic recombination between two polymorphic restriction sites within the β globin gene cluster. J Med Genet 23:14–18

    Google Scholar 

  • Öner R, Altay C, Gurgey A, Askoy M, Kilinc Y, Stoming TA, Reese AI, Kutlar A, Kutlar F, Huisman RHJ (1990) β thalassaemia in Turkey. Hemoglobin 14:1–13

    Google Scholar 

  • Öner C, Dimovski AJ, Olivieri NF, Schiliro G, Codrington JF, Fattoum S, Adekile DA, Öner R, Yuregir GT, Altay C, Gurgey A, Gupta RB, Jogessar VB, Kitundu MN, Loukopoulos D, Tamagini GP, Ribeiro MLS, Kutlar F, Gu LH, Lanclos KD, Huisman THJ (1992) βs haplotypes in various world populations. Hum Genet 89:99–104

    Google Scholar 

  • Orkin SH, Kazazian HH, Antonarakis SE, Goff SC, Boehm CD, Sexton JP, Waber PG, Giardina PJV (1982) Linkage of β thalassaemia mutations and β globin polymorphisms with DNA polymorphisms in human β-globin gene cluster. Nature 296:627–631

    Google Scholar 

  • O'Shaughnessy DF, Hill AVS, Bowden DK, Weatherall DJ, Clegg JB (1990) Globin genes in Micronesia: origin and affinities of Pacific Island Peoples. Am J Hum Genet 46:144–155

    Google Scholar 

  • Ottolenghi S, Carestia C (1986) β globin gene disorders in Italy and the Mediterranean area. In: Blasi F (ed) Human genes and diseases. Wiley, New York, pp 257–298

    Google Scholar 

  • Özalp I, Coskun T, Ceyhan M, Tokol S, Oran O, Erdem G, Tekinalp G, Durmus Z, Tarikahya Y (1986) Incidence of phenylketonuria and hyperphenylalaninaemia in a sample of the Turkish newborn population. J Inherited Metab Dis 9 [Suppl 2]:237–239

    Google Scholar 

  • Pagnier J, Mears JG, Dunda-Belkhodja O, Schaefer-Rego KE, Beldjord C, Nagel RL, Labie D (1984) Evidence for the multicentric origin of the sickle cell hemoglobin gene in Africa. Proc Natl Acad Sci USA 81:1771–1773

    Google Scholar 

  • Pawley A, Green RC (1984) The proto-Oceanic language community. J Pacific History 19:123–146

    Google Scholar 

  • Pirastu M, Galanello R, Doherty MA, Tuveri T, Cao A, Kan YW (1987) The same β globin gene mutation is present on nine different β thalassemia chromosomes in a Sardinian population. Proc Natl Acad Sci USA 84:2882–2885

    Google Scholar 

  • Pirastu M, Sagli G, Camaschella C, Loi A, Serra A, Bertero T, Gabutti W, Cao A (1988) Delineation of specific β thalassemia mutations in high risk areas of Italy: a pre-requisite for prental diagnosis. Blood 71:983–988

    Google Scholar 

  • Plato CC, Rucknagel DL, Gershowitz H (1964) Studies on the distribution of glucose-6-phosphate dehydrogenase deficiency, thalassemia and other genetic traits in coastal and mountain villages of Cyprus. Am J Hum Genet 27:198–212

    Google Scholar 

  • Radding CM (1978) Genetic recombination, strand transfer and mismatch repair. Annu Rev Biochem 47:847–880

    Google Scholar 

  • Ragusa A, Lombardo M, Sortino G, Lombardo T, Nagel RL, Labie D (1986) βs in Sicily is in linkage disequilibrium with the Benin haplotype: implications for gene flow. Am J Hematol 27:139–141

    Google Scholar 

  • Ramsay M, Jenkins T (1987) Globin gene associated restriction-fragment-length polymorphisms in Southern African peoples. Am J Hum Genet 41:1132–1144

    Google Scholar 

  • Raper HB (1956) Sickling in relation to morbidity from malaria and other diseases. Br Med J 1:965–966

    Google Scholar 

  • Rosatelli C, Falchi AM, Tuveri T, Scalas MT, DiTucci A, Monni G, Cao A (1985) Prenatal diagnosis of β thalassaemia with synthetic oligomer technique. Lancet I:241–243

    Google Scholar 

  • Rosatelli C, Leoni GB, Tuveri T, Scalas MT, DiTucci A, Cao A (1987) β-thalassaemia in Sardinians: implications for prental diagnosis. J Med Genet 24:97–100

    Google Scholar 

  • Rosatelli C, Tuveri T, Scalas MT, DiTucci A, Leoni GB, Furbetta A, Monni A, Cao A (1988) Prenatal diagnosis of β thalassaemia by oligonucleotide analysis in Mediterranean populations. J Med Genet 25:762–765

    Google Scholar 

  • Rouabhi L, Lapoumeroulie C, Amselem S, Krishnamoorthy R, Adjrad L, Girot R, Chardin P, Benabdji M, Labie D, Beldjord C (1988) DNA haplotype distribution in Algerian β thalassaemia patients. An extended evaluation by family studies and representative molecular characterization. Hum Genet 79:373–376

    Google Scholar 

  • Rucknagel DL, Neel JV (1961) The haemoglobinopathies. Prog Med Genet 1:158–160

    Google Scholar 

  • Rund D, Cohen T, Filson D, Dowling CE, Warren TC, Barak I, Rachmilewitz E, Kazazian HH, Oppenheim A (1991) Evolution of a genetic disease in an ethnic isolate: β thalassaemia in the Jews of Kurdistan. Proc Natl Acad Sci USA 88:310–314

    Google Scholar 

  • Sampietro M, Cappellini MD, Fiorelli G, Wainscoat JS, Thein SL, Weatherall DJ (1988) genotypes of β thalassaemia major and intermedia in Italy. Birth Defects 23:117–123

    Google Scholar 

  • Schiliro G, Spena M, Giambelluca E, Maggio A (1990) Sickle haemoglobinopathies in Sicily. Am J Hematol 33:81–85

    Google Scholar 

  • Semenza GL, Malladi P, Poncz M, Degrosso K, Schwartz E, Surray S (1984) Detection of a novel DNA polymorphism in the β globin cluster and evidence from site specific recombination. Clin Res 18:225A

    Google Scholar 

  • Siniscalco M, Bernini L, Latte B, Motulsky AG (1961) Favism and thalassaemia in Sardinia and their relationship to malaria. Nature 190:1179–1180

    Google Scholar 

  • Siniscalco M, Bernini L, Filippi G, Latte B, Khan PM, Piomelli S, Rattazzi M (1966) Population genetics of haemoglobin variants, thalassaemia and glucose-6 -phosphate dehydrogenase deficiency, with particular reference to the malaria hypothesis. Bull WHO 34:379–393

    Google Scholar 

  • Smithies O, Powers PA (1986) Gene conversions and their relation to homologous chromosome pairing. Philos Trans R Soc Lond [Biol] 312:291–302

    Google Scholar 

  • Sozuoz A, Berkalp A, Figus A, Loi A, Pirastu M, Cao A (1988) β-thalassaemia mutations in Turkish Cypriots. J Med Genet 25:766–768

    Google Scholar 

  • Spriggs M (1984) The Lapita cultural complex. J Pacific History 19:185–206

    Google Scholar 

  • Spritz RA (1981) Duplication deletion polymorphisms 5′ to the human β-globin gene. Nucleic Acids Res 9:5037–5047

    Google Scholar 

  • Stamatoyannopoulos G, Fessas P (1964) Thalassaemia glucose-6-phosphate dehydrogenase deficiency, sickling and malaria endemicity in Greece; a study of five areas. Br Med J 1:875–879

    Google Scholar 

  • Starck J, Bouhass R, Morle F, Godet J (1990) Extent and high frequency of a short conversion between the human Aγ and Gγ fetal globin genes. Hum Genet 84:179–184

    Google Scholar 

  • Stringer CB, Andrews P (1988) Genetic and fossil evidence for the origin of modern humans. Science 239:1263–1268

    Google Scholar 

  • Thein SL, Old JM, Wainscoat JS, Petrou M, Modell B, Weatherall DJ (1984) Population and genetic studies suggest a single origin for the Indian deletion β° thalassaemia. Br J Haematol 57:271–278

    Google Scholar 

  • Thein SL, Hesketh C, Wallace RB, Weatherall DJ (1988) The molecular basis of thalassaemia major and thalassaemia intermedia in Asian Indians: application to prenatal diagnosis. Br J Haematol 70:225–231

    Google Scholar 

  • Treco D, Thomas B, Arnheim N (1985) Recombination hot spot in the human β-globin gene cluster: meiotic recombination of human DNA fragments in Saccharomyces cerevisiae. Mol Cell Biol 5:2029–2038

    Google Scholar 

  • Trent RJ, Mickleson KNP, Wilkinson T, Yakas J, Bluck R, Dixon M, Liley AW, Kronenberg H (1985) α-globin gene rearrangements in Polynesians are not associated with malaria. Am J Hematol 18:431–433

    Google Scholar 

  • Trent RJ, Mickleson KNP, Wilkinson T, Yakas J, Dixon MW, Hill PJ, Kronenburg H (1986) Globin genes in Polynesians have many rearrangements including a recently described γγγγ Am J Hum Genet 39:350–360

    Google Scholar 

  • Trent RJ, Buchanan JG, Webb A, Goundar RPS, Seruvatu LM, Mickleson KNP (1988) Globin genes are useful markers to identify genetic similarities between Fijians and Pacific Islanders from Polynesia and Melanesia. Am J Hum Genet 42:601–607

    Google Scholar 

  • Tsintsof AS, Hertzberg MS, Prior JF, Mickleson KNP, Trent RJ (1990) α-globin gene markers identify genetic differences between Australian Aborigines and Melanesians. Am J Hum Genet 46:138–143

    Google Scholar 

  • Wainscoat JS, Bell JI, Old JM, Weatherall DJ, Furbetta M, Galanello R, Cao A (1983a) Globin gene mapping studies in Sardinian patients homozygous for β° thalassaemia. Mol Biol Med 1:1–10

    Google Scholar 

  • Wainscoat JS, Bell JI, Thein SL, Higgs DR, Serjeant GR, Peto TEA, Weatherall DJ (1983b) Multiple origins of the sickle mutation: evidence from βs globin gene cluster polymorphisms. Mol Biol Med 1:191–197

    Google Scholar 

  • Wainscoat JS, Old JM, Weatherall DJ, Orkin SH (1983c) The molecular basis for the clinical diversity of β thalassaemia in Cypriots. Lancet I:1235–1237

    Google Scholar 

  • Wainscoat JS, Hill AVS, Boyce AJ, Flint J, Hernandez M, Thein SL, Old JM, Lynch JR, Falusi AG, Weatherall DJ, Clegg JB (1986a) Evolutionary relationships of human populations from an analysis of nuclear DNA polymorphisms. Nature 319:491–493

    Google Scholar 

  • Wainscoat JS, Work S, Sampietro M, Cappellini MD, Fiorelli G, Terzoli S, Weatherall DJ (1986b) Feasibility of prenatal diagnosis of β thalassaemia by DNA polymorphisms in an Italian population. Br J Haematol 62:495–500

    Google Scholar 

  • Wang T, Okano Y, Eisenmuth RC, Harvey ML, Lo WHY, Huang S-Z, Zeng Y-T, Furyyama J, Oura T, Sommer S, Woo SLC (1991a) Founder effect of a prevalent phenylketonuria mutation in the Oriental population. Proc Natl Acad Sci USA 88:2146–2150

    Google Scholar 

  • Wang T, Okano Y, Eisenmuth RC, Lo WHY, Huang S-Z, Zeng Y-T, Yuan L-F, Liu S-R, Woo SLC (1991b) Missense mutations prevalent in Orientals with phenylketonuria: molecular characterization and clinical implications. Genomics 10:449–456

    Google Scholar 

  • White PJ, O'Connell JF (1982) A prehistory of Australia; New Guinea and Sahul. Academic Press, Sydney

    Google Scholar 

  • Wong C, Antonarakis SE, Goff SC, Orkin SH, Boehm CD, Kazazian HH (1986) On the origin and spread of β thalassemia: recurrent observation of four mutations in different ethnic groups. Proc Natl Acad Sci USA 83:6529–6532

    CAS  Google Scholar 

  • Woolf LI (1976) A study of the cause of the high incidence of phenylketonuria in Ireland and West Scotland. J Ir Med Assoc 69:398–401

    Google Scholar 

  • Wurm SA (1983) Linguistic prehistory in the New Guinea area. J Hum Evol 12:25–35

    Google Scholar 

  • Yang KG, Kutlar F, George E, Wilson JB, Stoming TA, Gonzalez-Redonda JM, Huisman THJ (1989) Molecular characterization of β globin gene mutations in Malay patients with HbE-β thalassaemia and thalassaemia major. Br J Haematol 72:73–80

    Google Scholar 

  • Yenchitsomanus P, Summers KM, Bhatia KK, Cattari J, Board PG (1985) Extremely high frequencies of α globin deletions in Madang and on Kar Kar island, Papua New Guinea. Am J Hum Genet 37:778–784

    Google Scholar 

  • Yenchitsomanus P, Summers KM, Chockkalingham C, Board PG (1986a) Characterization of G6PD deficiency and β thalassaemia in Papua New Guinea. Papua New Guinea Med J 29:53–58

    Google Scholar 

  • Yenchitsomanus P, Summers KM, Board PG, Bhatia KK, Jones GL, Johnston K, Nurse GT (1986b) Alpha thalassaemia in Papua New Guinea. Hum Genet 74:432–437

    Google Scholar 

  • Zeng Y-T, Huang S-Z (1987) Disorders of haemoglobin in China. J Med Genet 24:578–583

    Google Scholar 

  • Zhang J-Z, Cai SP, He X, Lin H-X, Lin HJ, Huang Z-G, Chehab FF, Kan YW (1988) Molecular basis of β thalassaemia in South China: strategy for DNA analysis. Hum Genet 78:37–40

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flint, J., Harding, R.M., Clegg, J.B. et al. Why are some genetic diseases common?. Hum Genet 91, 91–117 (1993). https://doi.org/10.1007/BF00222709

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00222709

Keywords

Navigation