Skip to main content
Log in

The receptor function of galactosyltransferase during cellular interactions

  • Reviews
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

The molecular mechanisms that underly cellular interactions during development are still poorly understood. There is reason to believe that complex glycoconjugates participate in cellular interactions by binding to specific cell surface receptors. One class of carbohydrate binding proteins that could serve as receptors during cellular interactions are the glycosyltransferases. Glycosyltransferases have been detected on a variety of cell surfaces, and evidence suggests that they may participate during cellular interactions by binding their specific carbohydrate substrates on adjacent cells or in extracellular matrix (see Refs. 1–4 for review).

This review will focus on the receptor function of galactosyltransferase, in particular, during fertilization, embryonic cell adhesion and migration, limb bud morphogenesis, immune recognition and growth control. In many of these systems, the galactosyltransferase substrate has been characterized as a novel, large molecular weight glycoconjugate composed of repeating N-acetyllactosamine residues. The function of surface galactosyl-transferase during cellular interactions has been examined with genetic and biochemical probes, including the T/t-complex morphogenetic mutants, enzyme inhibitors, enzyme modifiers, and competitive substrates. Collectively, these studies suggest that in the mouse, surface galactosyltransferase is under the genetic control of the T/t-complex, and participates in multiple cellular interactions during development by binding to its specific lactosaminoglycan substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roth, S., 1973. Q. Rev. Biol. 48: 541–563.

    Google Scholar 

  2. Shur, B. D. and Roth, S., 1975. Biochim. Biophys. Acta 415: 473–512.

    Google Scholar 

  3. Pierce, M., Turley, E. A. and Roth, S., 1980. Int. Rev. Cytol. 65: 1–47.

    Google Scholar 

  4. Shur, B. D., 1982. In: The Glycoconjugates (Horowitz, M., ed.), Vol. 111, pp. 145–185, Academic Press, New York.

  5. Akiyama, S. K., Yamada, K. M. and Hayashi, M., 1981. J. Supramol. Struct. Cell. Biochem. 16: 345–358.

    Google Scholar 

  6. Burrill, P. H., Bernardini, L, Kleinman, H. K. and Kretchmer, N., 1981. J. Supramol. Struct. Cell. Biochem. 16: 385–392.

    Google Scholar 

  7. Nathenson, S. G., Uehara, H., Ewenstein, B. M., Kindt, T. J. and Coligan, J. E., 1981. Ann. Rev. Biochem. 50: 1025–1052.

    Google Scholar 

  8. Watkins, W. M., 1974. In: The Red Blood Cell (Surgenor, D. M., ed.), pp. 293–360, Academic Press, New York.

  9. Frazier, W. and Glaser, L., 1979. Ann. Rev. Biochem. 48: 491–523.

    Google Scholar 

  10. Barondes, S. H., 1981. Ann. Rev. Biochem. 50: 207–231.

    Google Scholar 

  11. Rauvala, H. and Hakomori, S., 1981. J. Cell Biol. 88: 149–159.

    Google Scholar 

  12. Hesford, F. J. and Berger, E. G., 1981. Biochim. Biophys. Acta 649: 709–716.

    Google Scholar 

  13. Schachter, H. and Roseman, S., 1980. In: The Biochemistry of Glycoproteins and Proteoglycans (Lennarz, W. J. ed.), pp. 85–160, Plenum, New York.

  14. Struck, D. K. and Lennarz, W. J., 1980. In: The Biochemistry of Glycoproteins and Proteoglycans (Lennarz, W. J. ed.), pp. 35–83, Plenum, New York.

  15. Cummings, R. D., Cebula, T. A. and Roth, S., 1979. J. Biol. Chem. 254: 1233–1240.

    Google Scholar 

  16. Weiser, M. M., Neumeier, M. M., Quaroni, A. and Kirsch, K., 1978. J. Cell. Biol. 77: 722–734.

    Google Scholar 

  17. Shaper, J. H. and Mann, P. L., 1981. J. Supra. Struct., Suppl. 5: 272.

    Google Scholar 

  18. Pestalozzi, D. M., Hess, M. and Berger, E. G., 1982. J. Histochem. Cytochem. 30: 1146–1152.

    Google Scholar 

  19. Yogeeswaran, G., Laine, R. A. and Hakomori, S., 1974. Biochem. Biophys. Res. Commun. 59: 591–599.

    Google Scholar 

  20. Turley, E. A. and Roth, S., 1979. Cell 17: 109–115.

    Google Scholar 

  21. Strous, G. J. A. M. and Berger, E. G., 1982. J. Biol. Chem. 257:7623–7628.

    Google Scholar 

  22. Bennett, D., 1975. Cell 6: 441–454.

    Google Scholar 

  23. Silver, L. M., 1981. Cell 27: 239–240.

    Google Scholar 

  24. Nadijcka, M. and Hillman, N., 1975. J. Embryol. Exp. Morphol. 33: 725–730.

    Google Scholar 

  25. Durr, R., Shur, B. and Roth, S., 1977. Nature (London) 265: 547–548.

    Google Scholar 

  26. Shur, B. D., 1977. Dev. Biol. 58: 23–39.

    Google Scholar 

  27. Shur, B. D., 1977. Dev. Biol. 58: 40–55.

    Google Scholar 

  28. Shur, B. D. and Bennett, D., 1979. Dev. Biol. 71: 243–259.

    Google Scholar 

  29. Shur, B. D., 1982. Dev. Biol. 91: 149–162.

    Google Scholar 

  30. Hammerberg, C., 1982. Genet. Res. 39: 219–226.

    Google Scholar 

  31. Shur, B. D., 1981. Genet. Res. 38: 225–236.

    Google Scholar 

  32. Shur, B. D. and Hall, N. G., 1982. J. Cell Biol. 95: 567–573.

    Google Scholar 

  33. Artzt, K., Dubois, P., Bennett, D., Condamine, H., Babinet, C. and Jacob, F., 1973. Proc. Natl. Acad. Sci. U.S.A. 70: 2988–2992.

    Google Scholar 

  34. Muramatsu, T., Gachelin, G., Damonneville, M., Delarbre, C. and Jacob, F., 1979. Cell 18: 183–191.

    Google Scholar 

  35. Shur, B. D., 1982. J. Biol. Chem. 257: 6871–6878.

    Google Scholar 

  36. Jacob, F., 1979. Curr. Top. Dev. Biol. 13: 89–115.

    Google Scholar 

  37. Yanagimachi, R., 1981. In: Fertilization and Embryonic Development In Vitro (Mastroianni, L. Jr. and Biggers, J. D., eds.), pp. 81–182, Plenum, New York.

  38. Shur, B. D. and Hall, N. G., 1982. J. Cell Biol. 95: 574–579.

    Google Scholar 

  39. Bleil, J. O. and Wassarman, P. M., 1980. Cell 20: 873–882.

    Google Scholar 

  40. Johnson, M. H., 1981. Int. Rev. Cytol. (Suppl.) 12: 1–37.

    Google Scholar 

  41. Martin, G., 1980. Science 209: 768–775.

    Google Scholar 

  42. Shur, B. D., 1983. Dev. Biol. 99: 360–372

    Google Scholar 

  43. Ebner, K. E. and Magee, S. C., 1975. In: Subunit Enzymes. Biochemistry and Function (Ebner, K., ed.), pp. 137–179, Marcel Decker, New York.

  44. Takeichi, M., Atsumi, T., Yoshida, C., Uno, K. and Okada, T. S., 1981. Dev. Biol. 87: 340–350.

    Google Scholar 

  45. Grabel, L. B., Glabe, C. G., Singer, M. S., Martin, G. R. and Rosen, S. D., 1981. Biochem. Biophys. Res. Commun. 102: 1165–1171.

    Google Scholar 

  46. Hyafil, F., Morello, D., Babinet, C. and Jacob, F., 1980. Cell 21:927–934.

    Google Scholar 

  47. Yoshida, C. and Takeichi, M., 1982. Cell 28: 217–224.

    Google Scholar 

  48. Shur, B. D., Oettgen, P. and Bennett, D., 1979. Dev. Biol. 73: 178–181.

    Google Scholar 

  49. Roth, S., McGuire, E. J. and Roseman, S., 1971. J. Cell Biol. 51:536–547.

    Google Scholar 

  50. Porzig, E. F., 1978. Dev. Biol. 67: 114–136.

    Google Scholar 

  51. Balsamo, J. and Lilien, J., 1980. Biochemistry 19: 2479–2484.

    Google Scholar 

  52. Den, H. and Kaufman, B., 1968. Fed. Proc. Fed. Am. Soc. Exp. Biol. 27: 346.

    Google Scholar 

  53. Marchase, R. B., 1977. J. Cell Biol. 75: 237–257.

    Google Scholar 

  54. Pierce, M., 1982. J. Cell Biol. 93: 76–81.

    Google Scholar 

  55. Chesley, P., 1935. J. Exp. Zool. 70: 197–204.

    Google Scholar 

  56. Gruneberg, H., 1958. J. Embryol. Expl. Morphol. 6: 424–443.

    Google Scholar 

  57. Yanagisawa, K. O. and Fujimoto, H., 1977. J. Embryol. Exp. Morphol. 40: 277–283.

    Google Scholar 

  58. Yanagisawa, K. O., Fujimoto, H. and Urushihara, H., 1981. Dev. Biol. 87: 242–248.

    Google Scholar 

  59. Bennett, D., Goldberg, E., Dunn, L. C. and Boyse, E. A., 1972. Proc. Natl. Acad. Sci. U.S.A. 69: 2076–2080.

    Google Scholar 

  60. Heasman, J., Hynes, R. O., Swan, A. P., Thomas, V. and Wylie, C. C., 1981. Cell 27: 437–447.

    Google Scholar 

  61. Saunder, J. W. and Gasseling, M. T., 1968. In: Epithelial-Mesenchymal Interactions (Fleischmajer, R. and Billingham, R. E., eds.), pp. 78–97, Williams and Wilkins, Baltimore.

  62. Kosher, R. A., Savage, M. P. and Chan, S.-C., 1979. J. Embryol. Exp. Morphol. 50: 75–97.

    Google Scholar 

  63. Kosher, R. A., Savage, M. P. and Chan, S.-C., 1979. J. Exp. Zool. 209: 221–228.

    Google Scholar 

  64. Shur, B. D., Vogler, M. and Kosher, R. A., 1982. Exp. Cell Res. 137: 229–237.

    Google Scholar 

  65. Stutman, O., Dien, P., Wisun, R. A. and Lattime, E. C., 1980. Proc. Natl. Acad. Sci. U.S.A., 77: 2895–2998.

    Google Scholar 

  66. Higgins, T. J. and Parish, C. R., 1980. Mol. Immunol. 17: 1065–1073.

    Google Scholar 

  67. Blanden, R. V., Hapel, A. J. and Jackson, D. C., 1976. Immunochem. 13: 179–191.

    Google Scholar 

  68. Kurt, E. A., Shur, B. D. and Lindquist, R. R. (in preparation).

  69. Kurt, E. A., Shur, B. D. and Lindquist, R. R. ( in preparation).

  70. Baker, A. P., Smith, W. J. and Holden, D. A., 1980. Cell. Immunol. 51: 186–191.

    Google Scholar 

  71. LaMont, J. T., Perrotto, J. L., Weiser, M. M. and Isselbacher, K. J., 1974. Proc. Natl. Acad. Sci. U.S.A. 71: 3726–3730.

    Google Scholar 

  72. Aaronson, S. A. and Todaro, G., 1968. J. Cell Physiol. 72: 141–148.

    Google Scholar 

  73. Roth, S., Roelke, M. and Dorsey, J., 1977. In: Growth Kinetics and Biochemical Regulation of Normal and Malignant Cells (Drewinko, B. and Humphrey, R. M., eds.), pp. 245–253, Williams and Wilkins, Baltimore, Maryland.

  74. Holley, R. W., 1972. Proc. Natl. Acad. Sci. U.S.A. 69: 2840–2845.

    Google Scholar 

  75. Whittenberger, B., Raben, D., Lieberman, M. A. and Glaser, L., 1978. Proc. Natl. Acad. Sci. U.S.A. 75: 5457–5461.

    Google Scholar 

  76. Natraj, C. V. and Datta, P., 1978. Proc. Natl. Acad. Sci. U.S.A. 75:6115–6119.

    Google Scholar 

  77. Roth, S. and White, D., 1972. Proc. Natl. Acad. Sci. U.S.A. 69:485–489.

    Google Scholar 

  78. Setlow, V. P., Roth, S. and Edidin, M., 1979. Exp. Cell Res. 121:55–61.

    Google Scholar 

  79. Cebula, T. A. and Roth, S., 1976. In: Biogenesis and Turnover of Membrane Macromolecules (Cook, T. S., ed.), pp. 235–250, Raven, New York.

  80. Klohs, W. D., Wilson, J. R. and Weiser, M. M., 1982. Exp. Cell Res. 141: 365–374.

    Google Scholar 

  81. Smith, C. A. and Brew, K., 1977. J. Biol. Chem. 252: 7294–7299.

    Google Scholar 

  82. Bosmann, H. B. and McLean, R. J., 1975. Biochem. Biophys. Res. Commun. 63: 323–327.

    Google Scholar 

  83. Vacquier, V. D. and Moy, G. W., 1977. Proc. Natl. Acad. Sci. U.S.A. 74: 2456–2460.

    Google Scholar 

  84. Kinsey, W. H. and Lennarz, W. J., 1981. J. Cell Biol. 91: 325–331.

    Google Scholar 

  85. Powell, J. T. and Brew, K., 1976. Biochemistry 15: 3499–3505.

    Google Scholar 

  86. Edelman, G. M., 1983. Science 219: 450–457.

    CAS  PubMed  Google Scholar 

  87. Verbert, A., Cacan, R. and Montreuil, J., 1976. Eur. J. Biochem. 70: 49–53.

    Google Scholar 

  88. Patt, L. M., Endres, R. O., Lucas, D. O. and Grimes, W. J., 1976. J. Cell Biol. 68: 799–802.

    Google Scholar 

  89. Shur, B. D. and Litoff, D. (in preparation).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shur, B.D. The receptor function of galactosyltransferase during cellular interactions. Mol Cell Biochem 61, 143–158 (1984). https://doi.org/10.1007/BF00222492

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00222492

Keywords

Navigation