Skip to main content
Log in

Mapping genetic factors controlling pollen viability in an interspecific cross in Helianthus sect. Helianthus

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Segregation of 48 genetic markers, including one CMS restorer gene, one morphological character gene, six isozymes and 40 RAPD loci, was scored in a backcross progeny of an interspecific hybrid H. argophyllusxH. annuus cv RHA274. A linkage map was generated taking into account segregation distortions for 11 of the 48 loci in the frame of two different models considering locus-pair segregation in the context of either independent selection pressures or non-equilibrated parental classes. The map consists of nine linkage groups and nine isolated markers covering 390 cM. Approximately half of the plants of the BC1 were male fertile as expected for the segregation of one dominant male-fertility restorer gene; however, these displayed a large range of variation for pollen viability. About 80% of this variation was explained by three genomic regions located on linkage groups 1, 2 and 3. The observation of meiotic chromosomes revealed a significant rate of mispairing (rod bivalents and tetravalents) in tight correlation with pollen viability, indicating that chromosome rearrangements (translocations) are the preponderant factors reducing pollen viability in this progeny. Cytogenetic and mapping data suggest that the three genomic regions involved in pollen-viability variation are located close to translocation points which differentiate the parental-species karyotypes. Segregation distortion was observed for loci correlated with pollen-viability variation. These were most likely the result of two possible suggested mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander MP (1969) Differential staining of aborted and non-aborted pollen. Stain Technol 44:117–122

    CAS  PubMed  Google Scholar 

  • Bailey NTJ (1949) The estimation of linkage with differential viability, II and III. Heredity 3:220–228

    Google Scholar 

  • Berry ST, Leon AJ, Hanfrey CC, Challis P, Burkholz A, Barnes SR, Rufener GK, Lee M, Calagari PDS (1995) Molecular marker analysis of Helianthus annuus L. 2. Construction of an RFLP linkage map for cultivated sunflower. Theor Appl Genet (in press)

  • Causse MA, Fulton TM, Cho YG, Ahn SN, Chunwongse J, Wu FS, Xiao JH, Yu ZH, Ronald PC, Harrington SE, Second G, Mccouch SR, Tanksley SD (1994) Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138:1251–1274

    CAS  PubMed  Google Scholar 

  • Chandler JM, Jan CC, Beard BH (1986) Chromosomal differentiation among the annual Helianthus species. Systematic Bot 11:354–371

    Google Scholar 

  • Christov M (1990) A new source of cytoplasmic male sterility in sunflower originating from Helianthus argophyllus. Helia 13(13):55–61

    Google Scholar 

  • Doebley J, Stec A (1993) Inheritance of the morphological differences between maize and teosinte: comparison of results for two F2 populations. Genetics 134:559–570

    CAS  PubMed  Google Scholar 

  • Fauré S, Noyer JL, Horry JP, Bakry F, Lanaud C, González de León D (1993) A molecular marker-based linkage map of diploid bananas (Musa acuminata). Theor Appl Genet 87:517–526

    Google Scholar 

  • Figueiras AM, Gonzalez-Jaen MT, Salinas J, Benito C (1985) Association of isozymes with a reciprocal translocation in cultivated rye (Secale cereale L.) Genetics 109:177–193

    Google Scholar 

  • Gelfi N, Blanchet R (1980) Caractères xérophytes de quelques espèces d' Helianthus susceptibles d'être utilisés pour améliorer l'adaptation aux conditions sèches du Tournesol (Helianthus annuus L.). C R Acad Sc Paris 290:279–282

    Google Scholar 

  • Gentzbittel L (1990) Construction d'une phylogénie moléculaire du genre Helianthus. Application à l'analyse des stérilités mâles cytoplasmiques du tournesol. PhD thesis, Université Claude Bernard, Lyon I, France

    Google Scholar 

  • Gentzbittel L, Vear F, Zhang Y-X, Bervillé A, Nicolas P (1995) Development of a consensus linkage map of cultivated sunflower (H. annuus L.). Theor Appl Genet 90:1079–1086

    CAS  Google Scholar 

  • Geogieva-Todorova J (1984) Interspecific hybridization in the genus Helianthus L. Z Planzenzüchtg 93:265–279

    Google Scholar 

  • Giese H, Holm-Jensen AG, Mathiassen H, Kjaer B, Rasmussen SJ, Bay H, Jensen J (1994) Distribution of RAPD markers on a linkage map of barley. Hereditas 120:267–273

    Google Scholar 

  • Grant V (1971) Genetics of flowering plants. Columbia University Press, New York

    Google Scholar 

  • Griveau Y, Serieys H, Belhassen E (1992) Resistance evaluation of interspecific and cultivated progenies of sunflower infected by Diaporthe helianthi. In: Proc 13th Int Sunflower Conference, Pisa, Italy, pp 1054–1058

  • Heiser CB (1951) Hybridization in the annual sunflowers: Helianthus annuus and H. argophyllus. Am Nat 85:65–72

    Google Scholar 

  • Heiser CB, Smith DM, Clevenger SB, Martin WC (1969) The North American sunflowers (Helianthus). Mem Torrey Bot Club 22:1–218

    Google Scholar 

  • Kesselli RV, Paran I, Michelmore RAW (1992) Efficient mapping of specifically targeted genomic regions and the tagging of these regions with reliable PCR-based genetic markers. In: Proc Symp Application of RAPD technology to plant breeding. Minneapolis, Minnesota, pp 31–36

  • Kesselli RV, Paran I, Michelmore RW (1994) Analysis of a detailed genetic linkage map of Lactuca sativa (lettuce) constructed from RFLP and RAPD markers. Genetics 136:1435–1446

    Google Scholar 

  • Kianian SF, Quiros CF (1992) Generation of a Brassica oleracea composite RFLP map: linkage arrangements among various populations and evolutionary implications. Theor Appl Genet 84:544–554

    Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eug 12:172–175

    Google Scholar 

  • Kulshrestha VB, Gupta PK (1979) Cytogenetic studies in the genus Helianthus L., Cytologia 44:325–334

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    CAS  PubMed  Google Scholar 

  • Laveau JH, Schneider C, Bervillé A (1989) Microsporogenesis abortion in cytoplasmic male-sterile plants from H. petiolaris or H. petiolaris fallax crossed by sunflower (Helianthus annuus). Ann Bot 64: 137–148

    Google Scholar 

  • Lorieux M, Goffinet B, Perrier X, González de Leon D, Lanaud C (1995) Maximum-likelihood models for mapping genetic markers showing segregation distortion. 1. Backcross populations. Theor Appl Genet 90:73–80

    Google Scholar 

  • Miller JC, Tanksley SD (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80:437–448

    CAS  Google Scholar 

  • Miller JF, Seiler GJ, Jan CC (1992) Introduced germplasm use in sunflower inbreds and hybrid development. In: Use of plant introductions in cultivar development, part 2. Crop Science Society of America, Madison, USA, pp 151–166

    Google Scholar 

  • Morizet J, Cruiziat P, Chatenoud J, Picot P, Leclercq P (1984) Essai d' amélioration de la résistance à la sécheresse du tournesol (Helianthus annuus) par croisement interspécifique avec une espèce sauvage (Helianthus argophyllus). Réflexions sur les méthodes utilisées et les premiers résultats obtenus. Agronomie 4:577–585.

    Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphism. Nature 335:721–726

    Article  CAS  PubMed  Google Scholar 

  • Quillet MC, Vear F, Branlard G (1992) The use of isozyme polymorphism for identification of sunflower (Helianthus annuus L.) inbred lines. J Genet Breed 46:295–304

    Google Scholar 

  • Quresh Z, Jan CC, Gulya TJ (1993) Resistance to sunflower rust and its inheritance in wild sunflower species. Plant breed 110:297–306

    Google Scholar 

  • Rieseberg LH, Choi HC, Chan R, Spore C (1993) Genomic map of a diploid hybrid species. Heredity 70:485–493

    Google Scholar 

  • Rieseberg LH, Desrochers AM, Youn SJ (1995) Interspecific pollen competition as a reproductive barrier between sympatric species of Helianthus (Asteraceae). Am J Bot 82:515–519

    Google Scholar 

  • Rogers CE, Thomson TE, Seiler G J (1982) Sunflower species of the United States. National Sunflower Association, Bismark, North Dakota

    Google Scholar 

  • SAS Institute Inc. (1987) SAS/STAT Guide for personal computers, version 6 edition. SAS Institute Inc, Cary, North Carolina

    Google Scholar 

  • Schneiter AA, Miller JF (1981) Description of sunflower growth stages. Crop Sci 21:901–903

    Google Scholar 

  • Seiler G J (1988) The genus Helianthus as a source of genetic variability for cultivated sunflower. In: Proc 12th Int Sunflower Conf, Novi Sad, Yougoslavia, pp 17–58

    Google Scholar 

  • Seiler GJ (1992) Utilization of wild sunflower species for the improvement of cultivated sunflower. Field Crops Res 30:195–230

    Google Scholar 

  • Serieys H (1991) Agrophysiological consequences of a divergent selection based on foliar dessiccation in sunflower. In: INRA (eds) Les Colloques de l'INRA no.55, Paris, pp 221–224

  • Serieys H (1994) Report of the past activities of the F.A.O. working group: identification, study and utilization in breeding programs of new CMS sources, for the period 1991–1993. Helia 17(21):93–102

    Google Scholar 

  • Serieys H, Vincourt P (1987) Characterisation of some new CMS sources from the Helianthus genus. Helia 10:9–13

    Google Scholar 

  • Skoric D (1985) Sunflower breeding for resistance to Diaporthe/Phomopsis helianthi. Helia 8:21–24

    Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. Addison-Wesley, New York

    Google Scholar 

  • Tadmor Y, Zamir D, Ladizinsky G (1987) Genetic mapping of an ancient translocation in the genus Lens. Theor Appl Genet 73:883–892

    Google Scholar 

  • Whelan EDP (1978) Cytology and interspecific hybridization. In: Carter JF (eds). Sunflower science and technology. American Society of Agronomy, Madison, Wisconsin, pp 339–369

    Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. F. Linskens

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quillet, M.C., Madjidian, N., Griveau, Y. et al. Mapping genetic factors controlling pollen viability in an interspecific cross in Helianthus sect. Helianthus . Theoret. Appl. Genetics 91, 1195–1202 (1995). https://doi.org/10.1007/BF00220929

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00220929

Key words

Navigation