Skip to main content
Log in

A structural phase-transition in K(Mg1−xCux)F3 perovskite

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

A complete solid-solution series between cubic (Pm 3 m) KMgF3 and tetragonal (I4/mcm) KCuF3 was synthesized at 730–735 °C in an inert atmosphere. X-ray powder-diffraction at room temperature shows that the transition between the cubic and tetragonal perovskite structures in the series K (Mg1−xCux) F3 occurs at x ∼ 0.6. Rietveld structure-refinements were done for selected compositions. In the cubic phase, all parameters are linear with composition up to the transition point. At the transition point, there is a strong discontinuity in the cell volume; this is strongly anisotropic with expansion along the a axes and contraction along the c axis due to a pronounced axial elongation of the (Mg, Cu) F6 octahedron that increases with increasing Cu content. The phase transition is first-order, with a discontinuity of ≈2% in the symmetry-breaking strain at xC. It is proposed that the phase transition in K (Mg, Cu) F3 is due to the onset of the cooperative Jahn-Teller effect.

Compositional relationships for lattice vibrations in this solid solution were established using thin-film infrared spectroscopy. A phase transition occurring above 60 mole % KCuF3 is indicated by the appearance of one of the two modes expected for the tetragonal phase; the weaker mode is not resolved below 80 mole % KCuF3. Modes common to both structures vary smoothly and continuously across the binary; however, frequencies do not depend linearly on composition, nor is mode-softening discernable. Two-mode behaviour is observed only for the bending motion of the cubic phase, because this peak alone has non-overlapping end-member components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appleman DE, Evans Jr. HT (1973) Job 9214: indexing and leastsquares refinement of powder diffraction data. U.S. Geol. Surv., Comput. Contrib. 20 NTIS Document PB 2–16 188

  • Baldochi SL, Gesland JY (1992) Crystal-growth of pure and lead doped barium-lithium fluoride. Mater Res Bull 27:891–900

    Google Scholar 

  • Baldochi SL, Mazzocchi VL, Parente CBR, Morato SP (1994) Study of the crystalline quality of Czochralski-grown barium lithium-fluoride single-crystals. Mater Res Bull 29:1321–1331

    Google Scholar 

  • Barker AS, Ditzenberger JA, Guggenheim HJ (1986) Long-wavelength optical lattice vibrations in mixed KMgF3-KNiF3 crystals. Phys Rev 175:1180–1190

    Google Scholar 

  • Bellafrouh K, Daul C, Michelcalendini FM (1992) Superhyperfine structure, optical-spectra and equilibrium geometry for Mn2+ in fluoride hosts. New J Chem 16:1119–1121

    Google Scholar 

  • Boumriche A, Gesland JY, Bulou A, Rousseau M, Fourquet JL, Hennion B (1994) Structure and dynamics of the inverted perovskite BaLiF3. Solid State Comm 91:125–128

    Google Scholar 

  • Carpenter MA (1992) Thermodynamics of phase transitions in minerals: A macroscopic approach. In: Price GD, Ross NL (eds) The stability of minerals, pp. 172–215. Chapman and Hall, London

    Google Scholar 

  • Chang IF, Mitra SS (1968) Application of a modified randomelement-isodisplacement model to long-wave length optic phonons of mixed crystals. Phys Rev 172:924–933

    Google Scholar 

  • Chopelas A, Boehler R (1992) Thermal expansivity in the lower mantle. Geophys Res Lett 19:1983–1986

    Google Scholar 

  • Eby RK, Hawthorne FC (1993) Structural relations in copper oxysalt minerals. I. Structural hierarchy. Acta Cryst B 49:28–56

    Google Scholar 

  • Fowler PW, Ding F, Munn RW (1995) Polarizabilities of anions in anisotropic environments — the fluoride-ion in the perovskite lattices NaMgF3, KMgF3 and KCaF3. Molec Phys 84:787–797

    Google Scholar 

  • Hill RJ, Howard CJ (1986) A computer program for Rietveld analysis of fixed wavelength X-ray and neutron powder diffraction patterns. Australian Atomic Energy Commission (Lucas Heights Research Laboratories, PMB, Sutherland, New South Wales, Australia), Report M 112

    Google Scholar 

  • Hofmeister AM (1995) Infrared microspectroscopy in earth science. In: Humeck HJ (ed) Practical guide to infrared microspectroscopy pp 377–416. Marcel Dekker Inc., New York

    Google Scholar 

  • Hofmeister AM, Billips K (1991) Comparison of infrared reflectance spectra of fluoride perovskites. Spectrochim Acta A47:1607–1617

    CAS  Google Scholar 

  • Hofmeister AM, Xu J, Mao H-K, Bell PM, Hoering TC (1989) Thermodynamics of Fe-Mg olivines at mantle pressures: Midand far-infrared spectroscopy at high pressure. Am Mineral 74:281–306

    Google Scholar 

  • International Tables For X-Ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press

  • Karamyan AA (1979) Optical vibrations and force field of perovskite cubic-type crystals. Opt Spectrosc 47:389–400

    Google Scholar 

  • Katrusiak A, Ratuszna A (1992) Phase-transitions and the structure of NaMnF3 perovskite crystals as a function of temperature and pressure. Solid State Comm 84:435–441

    Google Scholar 

  • Kauppinen JK, Moffatt DJ, Mantsch HH, Cameron DG (1981) Fourier self-deconvolution: a method for resolving intrinsically overlapped bands. Appl Spectrosc 35:271–276

    CAS  Google Scholar 

  • Lehner N, Rauh H, Strobel K, Geick R, Heger G, Bouillot J, Renker B, Rousseau M, Sterling WG (1982) Lattice dynamics, lattice instabilities and phase transitions in fluoride perovskites. J Phys C Solid State Phys 15:6545–6564

    Google Scholar 

  • Liu L-G (1976) Orthorhombic perovskite phases in olivine, pyroxene and garnet at high pressures and temperatures. Phys Earth Planet Int 11:289–298

    Google Scholar 

  • Maslen EN, Spadaccini N, Ito T, Marumo F, Tanaka K, Satow Y (1993) Synchrotron-radiation study of potassium zinc fluoride. Acta Cryst B 49:632–636

    Google Scholar 

  • McCammon CA, Rubie DC, Ross CR II, Siefert F, O'Neill HSC (1992) Mössbauer spectra of 57Fe0.05Mg0.95SiO3 perovskite at 80 and 298 K. Am Mineral 77:894–897

    Google Scholar 

  • Nakagawa I (1973) Transverse and longitudinal lattice frequencies and interatomic potential in some AMF3 perovskite fluoride crystals. Spectrochim Acta A29:1451–1461

    Google Scholar 

  • Nakamoto K (1978) Infrared and Raman Spectra of Inorganic and Coordination Compounds. John Wiley and Sons, New York 448 p

    Google Scholar 

  • Okazaki A (1967 a) The polytype structures of KCuF3. J Phys Soc Jap 26: 870

    Google Scholar 

  • Okazaki A (1967b) Errata: The polytype structures of KCuF3. J Phys Soc Jap 27:518

    Google Scholar 

  • Perry CH, Young EH (1967) Infrared studies of some perovskite fluorides. I. Fundamental lattice vibrations. J Appl Phys 38:4616–4628

    Google Scholar 

  • Ringwood AE (1989) Significance of the terrestrial Mg/Si ratio. Earth Planet Sci Lett 95:1–7

    Google Scholar 

  • Rodriguez F, Riesen H, Gudel HU (1991) Luminescence properties of Mn2+ in KMgF3 and KZnF3 perovskite. J Lumin 50:101–110

    Google Scholar 

  • Rubins RS, Drumheller JE (1987) The temperature dependence of the EPR spectrum of Cu2+ in ZnTiF6 · 6 H2O between 4 and 160 K. J Chem Phys 86:6660–6664

    Google Scholar 

  • Rubins RS, Tello LN, De DK, Black TD (1984) Jahn-Teller EPR spectra of Cu2+ in MgSiF6 · 6H2O. J Chem Phys 81:4230–4233

    Google Scholar 

  • Schmitz-Dumont O von, Grimm D (1967) Die Lichtabsorption des zweiwertigen Kupfers in binären und ternären Fluoriden. Z Anorg Allg Chem 355:280–294

    Google Scholar 

  • Schofield PF, Redfern SAT (1992) Ferroelastic phase transition in the sanmartinite (ZnWO4)-cuproscheelite (CuWO4) solid solution. J Phys Cond Matt 4:375–388

    Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A 32:751–767

    Google Scholar 

  • Stobel K, Geick R (1979) Infrared-active phonons of KMnF3 in both tetragonal phases. J Phys C Solid State Phys 12:3855–3870

    Google Scholar 

  • Stokes HT, Hatch DM (1988) Isotropy Subgroups of the 230 Crystallographic Space Groups. World Scientific, Singapore

    Google Scholar 

  • Tanaka K, Konishi M, Marumo F (1979) Electron density distribution in crystals of KCuF3 with Jahn-Teller distortion. Acta Cryst B 35:1303–1308

    Google Scholar 

  • Toledano J-C, Toledano P (1987) The Landau Theory of Phase Transitions. World Scientific, Singapore

    Google Scholar 

  • Watson GW, Parker SC, Wall A (1992) Molecular-dynamics simulation of fluoride-perovskites. J Phys Cond Matt 4:2097–2108

    Google Scholar 

  • Wiles DB, Young RA (1981) A new computer program for Rietveld analysis of X-ray powder diffraction patterns. J Appl Cryst 14:149–151

    Google Scholar 

  • Wolf GH, Bukowinski MST (1987) Theoretical study of the structural properties and equations of state of MgSiO3 and CaSiO3 perovskites: implications for lower mantle composition. In: Manghnami MH, Syono Y (eds) High pressure research in mineral physics, pp. 313–331. AGU, Washington, D.C.

    Google Scholar 

  • Woolen F (1972) Optical Properlies of Solids. Academic Press, New York City

    Google Scholar 

  • Zhao Y, Weidner DJ, Parise JB, Cox DE (1993 a) Thermal expansion and structural distortion of perovskite — data for NaMgF3 perovskite. Part I. Phys Earth Planet Int 76:1–16

    Google Scholar 

  • Zhao Y, Weidner DJ, Parise JB, Cox DE (1993 b) Critical phenomena and phase transition in perovskite — data for NaMgF3 perovskite. Part II. Phys Earth Planet Int 76:17–34

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burns, P.C., Hawthorne, F.C., Hofmeister, A.M. et al. A structural phase-transition in K(Mg1−xCux)F3 perovskite. Phys Chem Minerals 23, 141–150 (1996). https://doi.org/10.1007/BF00220725

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00220725

Keywords

Navigation