Skip to main content
Log in

Ultrastructure of the kidney of a South American caecilian, Typhlonectes compressicaudus (Amphibia, Gymnophiona)

I. Renal corpuscle, neck segment, proximal tubule and intermediate segment

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The ultrastructure of the renal corpuscle, the neck segment, the proximal tubule and the intermediate segment of the kidney of a South American caecilian, Typhlonectes compressicaudus (Amphibia, Gymnophiona) was examined by means of transmission electron microscopy (TEM), scanning electron microscopy (SEM) and freezefracture technique. The glomerular filter apparatus consists of the podocyte epithelium, a distinct basement membrane, a subendothelial space and the capillary endothelium. Emanating from the podocyte cell body, several long primary processes encircle neighboring capillaries. The short slender foot processes originating from the primary processes interdigitate with those from other primary processes, thereby forming the meandering filtration slit. Thick bundles of microfilaments are found in the primary processes, but absent in the foot processes. The basement membrane consists of a lamina rara externa and a rather thin lamina densa (50 nm thickness). The wide subendothelial space contains abundant microfibrils, a few collagen fibrils and many thin processes of mesangial cells. The endothelium is flat and fenestrated (compared to mammals displaying relatively few fenestrations); some of the fenestrations are bridged by a diaphragm. The glomerular mesangium is made up of the mesangial cells and a prominent mesangial matrix containing microfibrils and collagen fibrils. The cells of the neck and intermediate segments display numerous cilia with their microtubules arranged in the typical 9+2 pattern. The basal bodies of the cilia are attached to thick filaments with a clear crossbanding pattern of 65 nm periodicity. The proximal tubule is composed of cells typical for this segment (PT cells) and light cells lacking a brush border (bald-headed cells). The PT cells measure 10–25 μm in height and 15–30 μm in width and do not interdigitate at their lateral borders with each other. Their basolateral cell membrane is amplified by many folds projecting into lateral intercellular spaces and into basal recesses. The brush border is scarce and composed of loosely arranged short microvilli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altland PD, Hathaway WE (1974) Erythrocyte and hemoglobin values: vertebrates. In: Altman PL, Dittmer DS (eds) Biology data book, 2nd ed, vol 3, Federation of American Societies for Experimental Biology, Bethesda, pp 1849–1953

    Google Scholar 

  • Bargmann W (1934) Untersuchungen über Histologie und Histophysiologie der Fischniere. I. Dipnoer: Lepidosiren paradoxa. Z Zellforsch 21:388–411

    Google Scholar 

  • Bargmann W, Hehn Gv (1971) Über das Nephron der Elasmobranchier. Z Zellforsch 114:1–21

    Google Scholar 

  • Brenner BM, Dworkin LD, Ichikawa I (1986) Glomerular ultrafiltration. In: Brenner BM, Rector FC (eds) The kidney, 3rd ed, vol l, WB Saunders, Philadelphia, pp 124–144

    Google Scholar 

  • Chase SW (1923) The mesonephros and urogenital ducts of Necturus maculosus, Rafinesque. J Morphol 37:457–531

    Google Scholar 

  • Conel JLR (1917) The urogenital system of myxinoids. J Morphol 29:75–163

    Google Scholar 

  • Dantzler WH (1985) Comparative aspects of renal function. In: Seidin DW, Giebisch G (eds) The kidney: physiology and pathophysiology. Raven Press, New York, pp 333–364

    Google Scholar 

  • Davis LE, Schmidt-Nielsen B (1967) Ultrastructure of the crocodile kidney (Crocodylus acutus) with special reference to electrolyte and fluid transport. J Morphol 121:255–276

    Google Scholar 

  • Davis LE, Schmidt-Nielsen B, Stolte H (1976) Anatomy and ultrastructure of the excretory system of the lizard, Sceloporus cyanogenys. J Morphol 149:279–326

    Google Scholar 

  • Dworkin LD, Brenner BM (1985) Biophysical basis of glomerular filtration. In: Seldin DW, Giebisch G (eds) The kidney: physiology and pathophysiology. Raven Press, New York, pp 397–426

    Google Scholar 

  • Freytag GE (1970) Schwanzlurche und Blindwühlen. In: Freytag GE, Grzimek B, Kühn O, Thenius E (eds) Grzimeks Tierleben, vol 5: Lurche, Kindler, Zürich, pp 313–358

    Google Scholar 

  • Gaupp E (1904) A Ecker's und R Wiedersheim's Anatomie des Frosches. 3. Abt: Lehre von den Eingeweiden, dem Integument und den Sinnesorganen. 2. Aufl, Friedrich Vieweg und Sohn, Braunschweig

    Google Scholar 

  • Heath-Eves MJ, McMillan DB (1974) The morphology of the kidney of the Atlantic hagfish, Myxine glutinosa (L). Am J Anat 139:309–334

    Google Scholar 

  • Himmelhoch SR, Karnovsky MJ (1961) Oxidative and hydrolytic enzymes in the nephron of Necturus maculosus. Histochemical, biochemical, and electron microscopical studies. J Biophys Biochem Cytol 9:893–908

    Google Scholar 

  • Kaissling B, Kriz W (1979) Structural analysis of the rabbit kidney. Adv Anat Embryol Cell Biol 56:1–123

    Google Scholar 

  • Kanwar YS (1984) Biology of disease. Biophysiology of glomerular filtration and proteinuria. Lab Invest 51:7–21

    Google Scholar 

  • Lacy ER, Reale E (1986) The elasmobranch kidney. II. Sequence and structure of the nephrons. Anat Embryol 173:163–186

    Google Scholar 

  • Linss W, Geyer G (1964) Über die elektronenmikroskopische Struktur der Nierentubuli von Rana esculenta. Anat Anz 115:281–296

    Google Scholar 

  • Maunsbach AB (1973) Ultrastructure of the proximal tubule. In: Orloff J, Berliner RW (eds) Handbook of physiology, section 8: Renal physiology, American Physiological Society Washington DC, pp 31–79

    Google Scholar 

  • Maunsbach AB, Boulpaep EL (1983) Paracellular shunt ultrastructure and changes in fluid transport in Necturus proximal tubule. Kidney Int 24:610–619

    Google Scholar 

  • Maunsbach AB, Boulpaep EL (1984) Quantitative ultrastructure and functional correlates in proximal tubule of Ambysloma and Necturus. Am J Physiol 246:F710-F724

    Google Scholar 

  • Moodie GEE (1978) Observations on the life history of the caecilian Typhlonectes compressicaudus (Dumeril and Bibron) in the Amazon basin. Can J Zool 56:1005–1008

    Google Scholar 

  • Pak Poy RKF (1958) Electron microscopy of the piscine (Carassius auratus) renal glomerulus. Aust J Exp Biol 36:191–210

    Google Scholar 

  • Renkin EM, Gilmore JP (1973) Glomerular filtration. In: Orloff J, Berliner RW (eds) Handbook of physiology, section 8: Renal physiology, American Physiological Society, Washington DC, pp 185–248

    Google Scholar 

  • Romer AS, Parsons TS (1985) The vertebrate body. 6th ed, Saunders, Philadelphia

    Google Scholar 

  • Sakai T (1985) The structure of the kidney from the freshwater teleost Carassius auratus. Anat Embryol 171:31–39

    Google Scholar 

  • Sakai T, Kawahara K (1983) The structure of the kidney of Japanese newts, Triturus (Cynops pyrrhogaster). Anat Embryol 166:31–52

    Google Scholar 

  • Sakai T, Kriz W (1987) The structural relationship between mesangial cells and basement membrane of the renal glomerulus. Anat Embryol 176:373–386

    Google Scholar 

  • Sakai T, Billo R, Kriz W (1986) The structural organization of the kidney of Typhlonectes compressicaudus (Amphibia, Gymnophiona). Anat Embryol 174:243–252

    Google Scholar 

  • Sarasin P, Sarasin F (1887–1890) Ergebnisse naturwissenschaftlicher Forschungen auf Ceylon in den Jahren 1884–1886. II. Zur Entwicklungsgeschichte über Anatomie des Ceylonischen Bilindwühle Ichthyophis glutinosus. LCW Kreidels, Wiesbaden

    Google Scholar 

  • Shea SM, Morrison AB (1975) A stereological study of the glomerular filter in the rat. J Cell Biol 67:436–443

    Google Scholar 

  • Stanton B, Biemesderfer D, Stetson D, Kashgarian M, Giebisch G (1984) Cellular ultrastructure of Amphiuma distal nephron: effects of exposure of potassium. Am J Physiol 247:C204-C216

    Google Scholar 

  • Taugner R, Schiller A, Ntokalou-Knittel S (1982) Cells and intercellular contacts in glomeruli and tubules of the frog kidney. Cell Tissue Res 226:589–608

    Google Scholar 

  • Tsujii T, Naito I, Ukita S, Ono T, Seno S (1984a) The anionic barrier system in the mesonephric renal glomerulus of the arctic lamprey, Entosphenus japonicus (Martens) (Cyclostomi). Cell Tissue Res 235:491–496

    Google Scholar 

  • Tsujii T, Naito I, Ukita S, Ono T, Seno S (1984b) The anionic barrier system in the mesonephric renal glomerulus of the brown hagfish, Paramyxine atami Dean (Cyclostomi). Anat Rec 208:337–347

    Google Scholar 

  • Unsicker K, Krisch B (1975) Kontraktile Filamente im Nephron. Dtsch Med Wschr 100:116–119

    Google Scholar 

  • Wake MH (1969) Kidney morphology in terrestrial and aquatic caecilians. Anat Rec 163:331

    Google Scholar 

  • Wake MH (1970) Evolutionary morphology of the caecilian urogenital system. II. The kidneys and urogenital ducts. Acta Anat 75:321–358

    Google Scholar 

  • Welsch U, Storch V (1973) Elektronenmikroskopische Beobachtungen am Nephron adulter Gymnophionen (Ichthyophis kohtaoensis Taylor). Zool Jb Anat 90:311–322

    Google Scholar 

  • Wendelaar Bonga SE, Veenhuia M (1974) The membranes of the basal labyrinth in the kidney cells of the stickleback, Gasterosteus aculeatus, studied in ultrathin sections and freeze etch replicas. J Cell Sci 14:587–609

    Google Scholar 

  • Yamada E (1960) Collagen fibrils within the renal glomerulus. J Biophys Biochem Cytol 7:407–409

    Google Scholar 

  • Youson JH, McMillan DB (1970a) The opisthonephric kidney of the sea lamprey of the great lakes, Petromyzon marinus L. I. The renal corpuscle. Am J Anat 127:207–232

    Google Scholar 

  • Youson JH, McMillan DB (1970b) The opisthonephric kidney of the sea lamprey of the great lakes, Petromyzon marinus L. II. Neck and proximal segments of the tubular nephron. Am J Anat 127:233–258

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research fellow of the Alexander von Humboldt Foundation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakai, T., Billo, R., Nobiling, R. et al. Ultrastructure of the kidney of a South American caecilian, Typhlonectes compressicaudus (Amphibia, Gymnophiona). Cell Tissue Res. 252, 589–600 (1988). https://doi.org/10.1007/BF00216646

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00216646

Key words

Navigation