Skip to main content
Log in

Rapid generation of chromosome-specific alphoid DNA probes using the polymerase chain reaction

  • Original Investigations
  • Published:
Human Genetics Aims and scope Submit manuscript

Summary

Non-isotopic in situ hybridization of chromosome-specific alphoid DNA probes has become a potent tool in the study of numerical aberrations of specific human chromosomes at all stages of the cell cycle. In this paper, we describe approaches for the rapid generation of such probes using the polymerase chain reaction (PCR), and demonstrate their chromosome specificity by fluorescence in situ hybridization to normal human metaphase spreads and interphase nuclei. Oligonucleotide primers for conserved regions of the alpha satellite monomer were used to generate chromosome-specific DNA probes from somatic hybrid cells containing various human chromosomes, and from DNA libraries from sorted human chromosomes. Oligonucleotide primers for chromosome-specific regions of the alpha satellite monomer were used to generate specific DNA probes for the pericentromeric heterochromatin of human chromosomes 1, 6, 7, 17 and X directly from human genomic DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anastasi J, Le Beau MM, Vardiman JW, Westbrook CA (1990) Detection of numerical chromosomal abnormalities in neoplastic hematopoietic cells by in situ hybridization with a chromosome-specific probe. Am J Pathol 136:131–139

    CAS  PubMed  Google Scholar 

  • Cremer T, Landegent J, Brückner A, Scholl HP, Schardin M, Hager HD, Devilee P, Pearson P, Ploeg M van der (1986) Detection of chromosome aberrations in the human nucleus by visualization of specific target DNAs with radioactive and non-radioactive in situ hybridization techniques: diagnosis of trisomy 18 with probe L1.84. Hum Genet 74:346–352

    Article  CAS  PubMed  Google Scholar 

  • Cremer T, Lichter P, Borden J, Ward DC (1988a) Detection of chromosome aberrations in metaphase and interphase tumor cells by in situ hybridization using chromosome-specific library probes. Hum Genet 80:235–246

    Article  CAS  PubMed  Google Scholar 

  • Cremer T, Tesin D, Hopman AHN, Manuelidis L (1988b) Rapid interphase and metaphase assessment of specific chromosomal changes in neuroectodermal tumor cells by in situ hybridization with chemically modified DNA probes. Exp Cell Res 176:199–220

    Article  CAS  PubMed  Google Scholar 

  • Emmerich P, Loos P, Jauch A, Hopman AHN, Wiegant J, Higgins M, White BN, Ploeg M van der, Cremer C, Cremer T (1989) Double in situ hybridization with digital image analysis. A new approach to study interphase chromosome topography. Exp Cell Res 181:126–140

    Article  CAS  PubMed  Google Scholar 

  • Green ED, Olson MV (1990) Systematic screening of yeast artificial-chromosome libraries by the use of the polymerase chain reaction. Proc Natl Acad Sci USA 87:1213–1217

    CAS  PubMed  Google Scholar 

  • Gnirke A, Barnes ST, Patterson D, Schild D, Featherstone T, Olson MV (1991) Cloning and in vivo expression of the human GART gene using yeast artificial chromosomes. EMBOJ 10:1629–1634

    CAS  Google Scholar 

  • Hopman AHN, Poddighe PJ, Smeets AWGB, Moesker O, Beck JLM, Vooijs GP, Ramaekers FC (1989) Detection of numerical chromosome aberrations in bladder cancer by in situ hybridization. Am J Pathol 135:1105–1117

    CAS  PubMed  Google Scholar 

  • Huxley C, Hagino Y, Schlessinger D, Olson MV (1991) The human HPRT gene on a yeast artificial chromosome is functional when transferred to mouse cells by cell fusion. Genomics 9:742–750

    Article  CAS  PubMed  Google Scholar 

  • Imai T, Olson M (1990) Second-generation approach to the construction of yeast artificial chromosome libraries. Genomics 8:297–303

    Article  CAS  PubMed  Google Scholar 

  • Jabs EW, Persico MG (1987) Characterization of human centromeric regions of specific chromosomes by means of alphoid sequences. Am J Hum Genet 41:374–390

    CAS  PubMed  Google Scholar 

  • Klever M, Grond-Ginsbach C, Scherthan H, Schroeder-Kurth T (1991) Chromosomal in situ suppression hybridization after Giemsa banding. Hum Genet 86:484–486

    Article  CAS  PubMed  Google Scholar 

  • Koch JE, Kolvraa S, Petersen KB, Gregersen N, Bolund L (1989) Oligonucleotide-priming methods for the chromosome-specific labelling of alpha satellite DNA in situ. Chromosoma 98:259–265

    Article  CAS  PubMed  Google Scholar 

  • Langer PR, Waldrop AA, Ward DC (1981) Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes. Proc Natl Acad Sci USA 78:6633–6637

    CAS  PubMed  Google Scholar 

  • Lengauer C, Riethman H, Cremer T (1990) Painting of human chromosomes with probes generated from hybrid cell lines by PCR with Alu and L1 primers. Hum Genet 86:1–6

    Article  CAS  PubMed  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Manuelidis L (1978) Chromosomal locations of complex and simple repeated human DNAs. Chromosoma 66:23–32

    CAS  PubMed  Google Scholar 

  • Manuelidis L, Borden J (1988) Reproducible compartmentalization of individual chromosome domains in human CNS cells revealed by in situ hybridization and three-dimensional reconstruction. Chromosoma 96:397–410

    Article  CAS  PubMed  Google Scholar 

  • Meyne J, Littlefield G, Moyzis RK (1989) Labeling of human centromeres using an alphoid DNA consensus sequence: application to the scoring of chromosome aberrations. Mutat Res 226:75–79

    Article  CAS  PubMed  Google Scholar 

  • Mitchell AR, Gosden JR, Miller DA (1985) A cloned sequence, pH82, of alphoid repeated DNA found at the centromeres of all human chromosomes. Chromosoma 92:369–377

    Article  CAS  PubMed  Google Scholar 

  • Pinkel D, Gray JW, Trask B, Engh G van den, Fuscoe J, Dekken H van (1986) Cytogenetic analysis by in situ hybridization with fluorescently labeled nucleic acid probes. Cold Spring Harb Symp Quant Biol 51:151–157

    CAS  PubMed  Google Scholar 

  • Poddighe PJ, Moesker O, Smeets D, Awwad BH, Ramaekers CS, Hopman AHN (1991) Interphase cytogenetics of hematological cancer: comparison of classical karyotyping and in situ hybridization using a panel of eleven chromosome specific DNA probes. Cancer Res 51:1959–1967

    CAS  PubMed  Google Scholar 

  • Popp S, Scholl HP, Loos P, Jauch A, Stelzer E, Cremer C, Cremer T (1990) Distribution of chromosome 18 and X centric heterochromatin in the interphase nucleus of cultured human cells. Exp Cell Res 189:1–12

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg HM, Singer MF, Rosenberg M (1978) Highly reiterated sequences of simiansimiansimiansimiansimian. Science 200:394–402

    CAS  PubMed  Google Scholar 

  • Waye JS, Willard HF (1985) Chromosome-specific alpha satellite DNA: nucleotide sequence analysis of the 2.0 kilobasepair repeat from the human X chromosome. Nucleic Acids Res 13:2731–2743

    CAS  PubMed  Google Scholar 

  • Waye JS, Willard HF (1986) Structure, organization and sequence of alpha satellite DNA from human chromosome 17: evidence for evolution by unequal crossing-over and an ancestral pentamer repeat with the human X chromosome. Mol Cell Biol 6:3156–3165

    CAS  PubMed  Google Scholar 

  • Waye JS, England SB, Willard HF (1987) Genomic organization of alpha satellite DNA on human chromosme 7: evidence for two distinct alphoid domains. Mol Cell Biol 7:349–356

    CAS  PubMed  Google Scholar 

  • Willard HF (1985) Chromosome-specific organization of human alpha satellite DNA. Am J Hum Genet 37:524–532

    CAS  PubMed  Google Scholar 

  • Willard HF, Waye JS (1987a) Hierarchical order in chromosomespecific human alpha satellite DNA. Trends Genet 3:192–198

    Article  CAS  Google Scholar 

  • Willard HF, Waye JS (1987b) Chromosome-specific subsets of human alpha satellite DNA: analysis of sequence divergence within and between chromosomal subsets and evidence for an ancestral pentameric repeat. J Mol Evol 25:207–214

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunham, I., Lengauer, C., Cremer, T. et al. Rapid generation of chromosome-specific alphoid DNA probes using the polymerase chain reaction. Hum Genet 88, 457–462 (1992). https://doi.org/10.1007/BF00215682

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00215682

Keywords

Navigation