Skip to main content
Log in

The 180-kD component of the neural cell adhesion molecule N-CAM is involved in cell-cell contacts and cytoskeleton-membrane interactions

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

N-CAM180, the molecular form of the three neural cell adhesion molecules (N-CAM) with the largest cytoplasmic domain, is accumulated at sites of cell-cell contact (cell bodies, neurites, growth cones) in cultures of neuroblastoma and cerebellum. At these sites the cytoskeletonmembrane linker protein brain spectrin and actin are also accumulated. Brain spectrin copurifies with N-CAM180 by immunoaffinity chromatography and binds specifically to N-CAM180 but not to N-CAM140 or N-CAM120 in a solid-phase binding test. These observations indicate an association of N-CAM180 with the cytoskeleton in vivo. This association may underlie the reduced lateral mobility of N-CAM180 in the surface membrane compared to N-CAM140 (Pollerberg et al. 1986). Together with the fact that N-CAM180 is only expressed after termination of neuron migration in vivo (Persohn and Schachner, unpublished) these results suggest a role for N-CAM180 in stabilization of cell contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennett V, Baines A, Davis JQ (1985) Ankyrin and synapsin: Spectrin-binding proteins associated with brain membranes. J Cell Biochem 29:57–165

    Article  Google Scholar 

  • Bolton AE, Hunter WH (1973) The labelling of proteins to high specific radioactivities by conjugations to a 125J-containing acylating agent. J Biochem 133:529–538

    CAS  Google Scholar 

  • Burridge K, Kelly T, Mangeat P (1982) Non-erythrocyte spectrins: Actin-membrane attachment proteins occurring in many cell types. J Cell Biol 95:478–486

    Article  CAS  PubMed  Google Scholar 

  • Chuong C-M, Edelman GM (1984) Alterations in neural cell adhesion molecules during development of different regions of the nervous system. J Neurosci 4:2354–2368

    CAS  PubMed  Google Scholar 

  • Covault J, Merlie JP, Goridis C, Sanes JR (1986) Molecular forms of N-CAM and its RNA in developing and denervated skeletal muscle. J Cell Biol 102:731–739

    Article  CAS  PubMed  Google Scholar 

  • Cunningham BA, Hoffman S, Rutishauser U, Hemperly J, Edelman GM (1983) Molecular topography of the neural cell adhesion molecule N-CAM: Surface orientation and location of sialic acid-rich and binding regions. Proc Natl Acad Sci USA 80:3116–3120

    Article  CAS  PubMed  Google Scholar 

  • Davis JQ, Bennett V (1983) Brain spectrin. Isolation of subunits and formation of hybrids with erythrocyte spectrin subunits. J Biol Chem 253:7757–7766

    Google Scholar 

  • Edelman GM (1985) Cell adhesion and the molecular processes of morphogenesis. Ann Rev Biochem 54:135–169

    Article  CAS  PubMed  Google Scholar 

  • Edwards C, Frisch HL (1976) A model for the localisation of acetylcholine receptors at the muscle endplate. J Neurobiol 7:377–781

    Article  CAS  PubMed  Google Scholar 

  • Eng LF, Vanderhaegen JJ, Bignami A, Gerstl B (1971) An acidic protein isolated from fibrous astrocytes. Brain Res 28:351–354

    Article  CAS  PubMed  Google Scholar 

  • Faissner A, Kruse J, Goridis C, Bock E, Schachner M (1984) The neural cell adhesion molecule L1 is distinct from the N-CAM related group of surface antigen BSP-2 and D2. EMBO J 3:733–737

    CAS  PubMed  Google Scholar 

  • Franke WW, Schmid E, Winter S, Osborn M, Weber K (1979) Widespread occurrence of intermediate-sized filaments of the vimentin-type in cultured cells from diverse vertebrates. Exp Cell Res 123:25–46

    Article  CAS  PubMed  Google Scholar 

  • Geiger B (1983) Membrane-cytoskeleton interaction. Biochim Biophys Acta 737:305–341

    CAS  PubMed  Google Scholar 

  • Gennarini G, Rougon G, Deagostini-Bazin H, Hirn M, Goridis C (1984a) Studies on the transmembrane disposition of the neural cell adhesion molecule N-CAM. A monoclonal antibody recognizing a cytoplasmic domain and evidence for the presence of phosphoserine residues. Eur J Biochem 142:57–64

    Article  CAS  PubMed  Google Scholar 

  • Gennarini G, Hirn M, Deagostini-Bazin H, Goridis C (1984b) Studies on the transmembrane disposition of the neural cell adhesion molecule N-CAM. The use of liposome-inserted radio-iodinated N-CAM to study its transbilayer orientation. Eur J Biochem 142:65–72

    Article  CAS  PubMed  Google Scholar 

  • Glenney JR Jr, Glenney P, Weber K (1982) F-actin-binding and cross-linking properties of porcine brain fodrin, a spectrin-related molecule. J Biol Chem 257:9781–9887

    CAS  PubMed  Google Scholar 

  • Goodman SR, Zagon IS (1984) Brain spectrin: A review. Brain Res Bull 13:813–832

    Article  CAS  PubMed  Google Scholar 

  • Goverman J, Hunkapillar K, Hood L (1986) A speculative view of the multicomponent nature of T cell antigen recognition. Cell 45:475-t84

    Article  CAS  PubMed  Google Scholar 

  • Hawkes RE, Niday E, Gordon J (1982) A dot immunobinding assay for monoclonal and other antibodies. Anal Biochem 119:142–147

    Article  CAS  PubMed  Google Scholar 

  • Hemperly JJ, Murray BA, Edelman GM, Cunningham BA (1986) Sequence of a cDNA clone encoding the polysialic acid-rich and cytoplasmatic domains of the neural adhesion molecule N-CAM. Proc Natl Acad Sci 83:3037–3041

    Article  CAS  PubMed  Google Scholar 

  • Hoessli D, Rungger-Brandle E, Jokusch BM, Gabbiani G (1980) Lymphocyte-actinin. Relationship to cell membrane and cocapping with surface receptors. J Cell Biol 84:305–312

    Article  CAS  PubMed  Google Scholar 

  • Hood L, Kronenberg M, Hunkapiller T (1985) T Cell Antigen receptors and the immunoglobulin supergene family. Cell 40:225–229

    Article  CAS  PubMed  Google Scholar 

  • Horwitz A, Duggan D, Buck C, Beckerle MC, Burridge K (1986) Interaction of plasma membrane fibronectin-receptor with talin — a transmembrane linkage. Nature 320:531–532

    Article  CAS  PubMed  Google Scholar 

  • Jockusch BM, Kelly KH, Meyer RK, Burger MM (1978) An efficient method to produce specific anti-actin antibodies. Histochemistry 55:177–184

    Article  CAS  PubMed  Google Scholar 

  • Keilhauer G, Faissner A, Schachner M (1985) Differential inhibition of neurone-neurone, neurone-astrocyte and astrocyte-astrocyte adhesion by L1, L2 and N-CAM antibodies. Nature 316:728–730

    Article  CAS  PubMed  Google Scholar 

  • Krebs KE, Zagon IS, Goodman SR (1986) A rapid purification of synapsin I: a neuron specific spectrin binding protein. Brain Res Bull (in press)

  • Lowry OH, Robrough NJ, Farr AC, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Martini R, Schachner M (1986) Immunoelectronmicroscopic localization of the neural cell adhesion molecules (L1, N-CAM, MAG) and their shared carbohydrate epitope and myelin basic protein (MBP) in developing sciatic nerve. J Cell Biol 103:2439–2448

    Article  CAS  PubMed  Google Scholar 

  • Peng HB, Poo MM (1986) Formation and disposal of acetylcholine receptor clusters in muscle cells. Trends Neurosci 3:125–129

    Article  Google Scholar 

  • Persohn E, Schachner M (1986) Immunoelectron-microscopic localization of the neural cell adhesion molecules L1 and N-CAM during postnatal development of the mouse cerebellum. (Submitted for publication)

  • Pollerberg GE (1986) Charakterisierung der 180 kD Komponente des neuralen Zelladhäsionsmoleküls (N-CAM) mit Hilfe eines neuen monoklonalen Antikörpers PhD thesis Univ Heidelberg, FRG

    Google Scholar 

  • Pollerberg GE, Sadoul R, Goridis C, Schachner M (1985) Selective expression of the 180-kD component of the neural cell adhesion molecule N-CAM during development. J Cell Biol 101:1921–1929

    Article  CAS  PubMed  Google Scholar 

  • Pollerberg GF, Schachner M, Davoust J (1986) Surface mobilities of two molecular weight forms of the neural cell adhesion molecule N-CAM are characteristic of distinct differentiation stages. Nature 324:462–465

    Article  CAS  PubMed  Google Scholar 

  • Rathjen FG, Rutishauser U (1984) Comparison of two cell surface molecules involved in neural cell adhesion. EMBO J 3:461–465

    CAS  PubMed  Google Scholar 

  • Rathjen FS, Schachner M (1984) Immunocytological and biochemical characterization of a new neuronal cell surface component (L1 antigen) which is involved in cell adhesion. EMBO J 3:1–10

    CAS  PubMed  Google Scholar 

  • Riederer BM, Zagon IS, Goodman SR (1986) Brain spectrin (240/235) and brain spectrin (240/235 E): two distinct spectrin subtypes with different locations within mammalian neural cells. J Cell Biol 102:2088–2097

    Article  CAS  PubMed  Google Scholar 

  • Rougon G, Deagostini-Bazin H, Hirn M, Goridis C (1982) Tissue-and developmental stage-specific forms of a neural cell surface antigen linked to differences in glycosylation of a common polypeptide. EMBO J 1:1239–1244

    CAS  PubMed  Google Scholar 

  • Rougon G, Marskak DR (1986) Structural and immunological characterization of the amino terminal domain of mammalian neural cell adhesion molecules. J Biol Chem 261:3396–3401

    CAS  PubMed  Google Scholar 

  • Rutishauser U, Goridis C (1986) N-CAM: The molecule and its genetics. Trends Genetics 2:72–76

    Article  CAS  Google Scholar 

  • Schachner M, Hedley-Whyte T, Hsu D, Schoonmaker G, Bignami A (1977) Ultrastructural localization of glial fibrillary acidic protein in mouse cerebellum by immunoperoxidase labeling. J Cell Biol 75:67–73

    Article  CAS  PubMed  Google Scholar 

  • Schachner M, Smith C, Schoonmaker G (1978) Immunological distinction between neurofilament and glial fibrillary acidic proteins by mouse antisera and their immunohistological characterization. Dev Neurosci 1:1–14

    Article  CAS  PubMed  Google Scholar 

  • Schnitzer J, Schachner M (1981 a) Expression of Thy-1, H-2 and NS-4 cell surface antigens and tetanus toxin receptors in early postnatal and adult mouse cerebellum. J Neuroimmunol 1:429–456

    Article  CAS  PubMed  Google Scholar 

  • Schnitzer J, Schachner M (1981 b) Developmental expression of cell type-specific markers in mouse cerebellar cortical cells in vitro. J Neuroimmunol 1:471–487

    Article  CAS  PubMed  Google Scholar 

  • Thor G, Pollerberg GE, Schachner M (1986) Molecular association of two neural cell adhesion molecules within the surface membrane of cultured mouse neuroblastoma cells. Neurosci Lett 66:121–126

    Article  CAS  PubMed  Google Scholar 

  • Trinkaus JP (1985) Further thought on directional cell movement during morphogenesis. J Neurosci Res 13:1–19

    Article  CAS  PubMed  Google Scholar 

  • Wieland T, Miura T, Seeliger A (1983) Analogues of phalloidin. Int J Pept Protein 3:1–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollerberg, G.E., Burridge, K., Krebs, K.E. et al. The 180-kD component of the neural cell adhesion molecule N-CAM is involved in cell-cell contacts and cytoskeleton-membrane interactions. Cell Tissue Res. 250, 227–236 (1987). https://doi.org/10.1007/BF00214676

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00214676

Key words

Navigation