Skip to main content
Log in

Sodium trisilicate: A new high-pressure silicate structure (Na2Si[Si2O7])

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Crystals of sodium trisilicate (Na2Si3O7) have been grown in the presence of melt at 9 GPa, 1200 °C using the MA6/8 superpress at Edmonton, and the X-ray structure determined at room pressure (R=2.0%). Na2Si3O7 is monoclinic with a=8.922(2) Å, b= 4.8490(5) Å, c=11.567(1) Å, β=102.64(1)∘ (C2/c), D x = 3.295 g·cm-3. Silicon occurs in both tetrahedral and octahedral coordination ([6]Si∶[4]Si = l∶2). The SiO4 tetrahedra form a diorthosilicate [Si2O7] group and are linked by the isolated SiO6 octahedra via shared corners into a framework of 6-membered ([4]Si-[4]Si-[6]Si[4]Si-[4] Si-[6]Si) and 4-membered ([4]Si-[6]Si-[4]Sr-[6]Si) rings: 〈[6]Si-O〉=1.789 Å, 〈[4]Si-O〉= 1.625 Å, [4]Si-O-[4]Si=132.9∘ and the bridging oxygen is overbonded (s = 2.22). Channels parallel to b-axis and [110] accommodate Na in irregular 6-fold coordination: 〈Na-O〉 = 2.511 Å.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baur WH, Kahn AA (1971) Rutile-type compounds IV. SiO2, GeO2 and a comparison with other rutile-type compounds. Acta Crystallogr B27:2133–2139

    Google Scholar 

  • Finger LW, Hazen RM (1991) Crystal chemistry of six-coordinated silicon: a key to understanding the Earth's deep interior. Acta Crystallogr B47:561–580

    Google Scholar 

  • Finger LW, Hazen RM, Zhang J, Ko J, Navrotsky A (1993) The effect of Fe on the crystal structure of wadsleyite β-(Mg1−xFex)2SiO4, 0.00 ≤ x ≤ 0.40. Phys Chem Minerals 19:361–369

    Google Scholar 

  • Finger LW, Hazen RM, Fursenko BA (1995) Refinement of the crystal structure of BaSi4O9 in the benitoite form. Elsevier Science, in press

  • Fleet ME (1990) Refinement of the structure of sodium enneagermanate (Na4Ge9O20). Acta Crystallogr C46:1202–1204

    Google Scholar 

  • Fleet ME (1992) Tetrahedral-site occupancies in reedmergnerite and synthetic boron albite (NaBSi3O8). Am Mineral 77:76–84

    Google Scholar 

  • Fleet ME (1993) Nonstoichiometric sodium pentaaluminum dodecaaluminogermanate (Na2.90Al5 [Al6.16Ge5.84O29.87]): A sechser double-ring structure. Z Krist 203:215–224

    Google Scholar 

  • Fleet ME, Henderson GS (1994) Sodium disilicate at 4GPa: A model structure for densification of silicate melts at moderate pressure. EOS Transactions of the American Geophysical Union, 75:370

    Google Scholar 

  • Hazen RM (1994) Crystal chemistry of three new high-pressure silicates with octahedrally-coordinated silicon. Geological Association of America, Abstracts With Programs, A-166

  • Henderson GS, Fleet ME (1991) The structure of alkali germanate and silicate glasses by Raman spectroscopy. Transactions of the American Crystallographic Association 27:269–278

    Google Scholar 

  • Hesse K-F (1979) Refinement of the crystal structure of silicon diphosphate, SiP2O7 AIV-A phase with six-coordinated silicon. Acta Crystallogr B35:724–725

    Google Scholar 

  • Ingri N, Lundgren G (1963) The crystal structure of Na4Ge9O20. Acta Chem Scand 17:617–633

    Google Scholar 

  • International Tables for X-ray Crystallography (1974) Kynoch Press, Birmingham

  • Ito E, Takahashi T (1987) Ultrahigh-pressure phase transformations and the constitution of the deep mantle. In: Manghnani MH, Syono Y (eds) High-pressure Research in Mineral Physics, American Geophysical Union Geophysics Monograph 39, pp 221–229

  • Kanzaki M, Xue X, Stebbins JF (1989) High pressure phase relations in Na2Si2O5, Na2Si4O9 and K2Si4O9 up to 12 GPa. EOS Transactions of the American Geophysical Union, 70:1418

    Google Scholar 

  • Kudoh Y, Ito E, Takeda H (1987) Effect of pressure on the crystal structure of perovskite-type MgSiO3. Phys Chem Minerals 14:350–354

    Google Scholar 

  • Li D, Fleet ME, Bancroft GM, Kasrai M, Henderson GS (1994) Pressure-induced coordination change of Si in alkali silicate glasses by Si K-edge X-ray absorption spectroscopy (XAS). EOS Transactions of the American Geophysical Union, 75:370

    Google Scholar 

  • Li D, Bancroft GM, Fleet ME, Feng XH (1995) Silicon K-edge XANES spectra of silicate minerals. Phys Chem Minerals, in press

  • Liebau F (1985) Structural chemistry of silicates. Springer-Verlag, Berlin

    Google Scholar 

  • Ringwood AE (1975) Composition and Petrology of the Earth's Mantle. McGraw-Hill, New York

    Google Scholar 

  • Ringwood AE, Major A (1971) Synthesis of majorite and other high pressure garnets and perovskites. Earth Planet Sci Lett 12:411–418

    Google Scholar 

  • Ross NL, Hazen RM (1990) High-pressure crystal chemistry of MgSiO3 perovskite. Phys Chem Minerals 17:228–237

    Google Scholar 

  • Ross NL, Shu J-F, Hazen RM (1990) High-pressure crystal chemistry of stishovite. Am Mineral 75:739–747

    Google Scholar 

  • Santarsiero BD, Xue X, Kanzaki M (1991) The crystal structure of a new high pressure polymorph of Na2Si2O5. Transactions of the American Crystallographic Association 27:279–283

    Google Scholar 

  • Sasaki S, Fujino K, Takeuchi Y, Sadanaga R (1980) On the estimation of atomic charges by the X-ray method for some oxides and silicates. Acta Crystallogr A36:904–915

    Google Scholar 

  • Smith JV (1953) Reexamination of the crystal structure of melilite. Am Mineral 38:643–661

    Google Scholar 

  • Swanson DK, Prewitt CT (1983) The crystal structure of K2SiVISi3 IVO9. Am Mineral 68:581–585

    Google Scholar 

  • Urakawa S, Kondo T, Igawa N, Shimomura O, Ohno H (1994) Synchrotron radiation study on the high-pressure and hightemperature phase relations of KAlSi3O8. Phys Chem Minerals 21:387–391

    Google Scholar 

  • Völlenkle H, Wittmann A (1971) Die Kristallstruktur des Kaliumtetragermanats K2[Ge4O4]. Monatshefte Chem 102:1245–1254

    Google Scholar 

  • Xue X, Stebbins JF, Kanzaki M, McMillan PF, Poe B (1991) Pressure-induced silicon coordination and tetrahedral structural changes in alkali oxide-silica melts up to 12 GPa: NMR, Raman, and infrared spectroscopy. Am Mineral 76:8–26

    Google Scholar 

  • Xue X, Stebbins JF, Kanzaki M (1994) Correlations between 17O NMR parameters and local structure around oxygen in highpressure silicates: Implications for the structure of silicate melts at high pressure. Am Mineral 79:31–42

    Google Scholar 

  • Yagi T, Mao HK, Bell M (1978) Structure and crystal chemistry of perovskite-type MgSiO3. Phys Chem Mineral 3:97–110

    Google Scholar 

  • Yagi A, Suzuki T, Akaogi M (1994) High pressure transitions in the system KAlSi3O8-NaAlSi3O8. Phys Chem Minerals 21:12–17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleet, M.E., Henderson, G.S. Sodium trisilicate: A new high-pressure silicate structure (Na2Si[Si2O7]). Phys Chem Minerals 22, 383–386 (1995). https://doi.org/10.1007/BF00213335

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00213335

Keywords

Navigation