Skip to main content
Log in

Determination of the solution structure of the SH3 domain of human p56 Lck tyrosine kinase

  • Research Paper
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

The solution structure of the SH3 domain of human p56 Lck tyrosine kinase (Lck-SH3) has been determined by multidimensional heteronuclear NMR spectroscopy. The structure was calculated from a total of 935 experimental restraints comprising 785 distance restraints derived from 1017 assigned NOE cross peaks and 150 dihedral angle restraints derived from 160 vicinal coupling constants. A novel combination of the constant-time 1H−13C NMR correlation experiment recorded with various delays of the constant-time refocusing delays and a fractionally 13C-labelled sample was exploited for the stereo-specific assignment of prochiral methyl groups. Additionally, 28 restraints of 14 identified hydrogen bonds were included. A family of 25 conformers was selected to characterize the solution structure. The average root-mean-square deviations of the backbone atoms (N, Cα, C′, O) among the 25 conformers is 0.42 Å for residues 7 to 63. The N- and C-terminal residues, 1 to 6 and 64 to 81, are disordered, while the well-converged residues 7 to 63 correspond to the conserved sequences of other SH3 domains. The topology of the SH3 structure comprises five anti-parallel β-strands arranged to form two perpendicular β-sheets, which are concave and twisted in the middle part. The overall secondary structure and the backbone conformation of the core β-strands are almost identical to the X-ray structure of the fragment containing the SH2-SH3 domains of p56 Lck [Eck et al. (1994) Nature, 368, 764–769]. The X-ray structure of the SH3 domain in the tandem SH2-SH3 fragment is spatially included within the ensemble of the 25 NMR conformers, except for the segment of residues 14 to 18, which makes intermolecular contacts with an adjacent SH2 molecule and the phosphopeptide ligand in the crystal lattice. Local structural differences from other known SH3 domains are also observed, the most prominent of which is the absence in Lck-SH3 of the two additional short β-strands in the regions Ser15 to Glu17 and Gly25 to Glu27 flanking the so-called ‘RT-Src’ loop. This loop (residues Glu17 to Leu24), together with the ‘n-Src’ loop (residues Gln37 to Ser46) confines the ligand interaction site which is formed by a shallow patch of hydrophobic amino acids (His14, Tyr16, Trp41, Phe54 and Phe59). Both loops are flexible and belong to the most mobile regions of the protein, which is assessed by the heteronuclear 15N,1H-NOE values characterizing the degree of internal backbone motions. The aromatic residues of the ligand binding site are arranged such that they form three pockets for interactions with the polyproline ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CT:

constant time

HSQC:

heteronuclear single-quantum coherence

NOE:

nuclear Overhauser enhancement

NOESY:

nuclear Overhauser enhancement spectroscopy

SH2:

Src homology domain 2

SH3:

Src homology domain 3

References

  • Alexandropoulos, K., Cheng, G. and Baltimore, D. (1995) Proc. Natl. Acad. Sci. USA, 92, 3110–3114.

    Google Scholar 

  • Anil, Kumar, Wagner, G., Ernst, R.R. and Wüthrich, K. (1980) Biochem. Biophys. Res. Commun., 95, 1–6.

    Google Scholar 

  • Archer, S.J., Ikura, M., Torchia, D.A. and Bax, A. (1991) J. Magn. Reson., 95, 636–641.

    Google Scholar 

  • Bartels, C., Xia, T., Billeter, M., Güntert, P., and Wüthrich, K. (1995) J. Biomol. NMR, 6, 1–10.

    Google Scholar 

  • Bax, A., Clore, G.M. and Gronenborn, A.M. (1990) J. Magn. Reson., 88, 425–431.

    Google Scholar 

  • Bax, A., Vuister, G.W. and Grzesiek, S. (1994) Methods Enzymol., 239, 79–105.

    Google Scholar 

  • Booker, G.W., Gout, I., Downing, A.K., Driscoll, P.C., Boyd, J., Waterfield, M.D. and Campbell, I.D. (1993) Cell, 73, 813–822.

    Google Scholar 

  • Borchert, T.V., Mathieu, M., Zeelen, J.P., Courtneidge, S.A. and Wierenga, R.K. (1994) FEBS Lett., 341, 79–85.

    Google Scholar 

  • Chen, J.K., Lane, W.S., Brauer, A.W., Tanaka, A. and Schreiber, S.L. (1993) J. Am. Chem. Soc., 115, 12591–12592.

    Google Scholar 

  • Chen, J.K. and Schreiber, S.L. (1995) Angew. Chem. Int. Ed. Engl., 34, 953–969.

    Google Scholar 

  • Cohen, G.B., Ren, R. and Baltimore, D. (1995) Cell, 80, 237–248.

    Google Scholar 

  • Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J. and Bax, A. (1995) J. Biomol. NMR, 6, 277–293.

    Google Scholar 

  • Driscoll, P.C., Clore, G.M., Marion, D., Wingfield, P.T. and Gronenborn, A.M. (1990) Biochemistry, 29, 3542–3556.

    Google Scholar 

  • Eck, M.J., Atwell, S.K., Shoelson, S.E. and Harrison, S.C. (1994) Nature 368, 764–769.

    Google Scholar 

  • Engh, R.A. and Huber, R. (1991) Acta Crystallogr., A47, 392–400.

    Google Scholar 

  • Feng, S., Chen, J.K., Yu, H., Simon, J.A. and Schreiber, S.L. (1994) Science, 266, 1241–1247.

    Google Scholar 

  • Gerber, P.R. and Müller, K. (1987) Acta Crystallogr., A43, 426–428.

    Google Scholar 

  • Gerber, P.R. and Müller, K. (1995) J. Comput.-Aided Mol. Design, 9, 251–268.

    Google Scholar 

  • Griesinger, C., Otting, G., Wüthrich, K. and Ernst, R.R. (1988) J. Am. Chem. Soc., 110, 7870–7872.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1992a). J. Magn. Reson., 99, 201–207.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1992b) J. Am. Chem. Soc. 114, 6291–6293.

    Google Scholar 

  • Grzesiek, S., Ikura, M., Clore, G.M., Gronenborn, A.M. and Bax, A. (1992) J. Magn. Reson., 96, 215–221.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1993) J. Am. Chem. Soc., 115, 12593–12594.

    Google Scholar 

  • Güntert, P., Braun, W. and Wüthrich, K. (1991a) J. Mol. Biol., 217, 517–530.

    Google Scholar 

  • Güntert, P., Qian, Y.Q., Otting, G., Müller, M., Gehring, W. and Wüthrich, K. (1991b) J. Mol. Biol., 217, 531–540.

    Google Scholar 

  • Güntert, P. and Wüthrich, K. (1991) J. Biomol. NMR, 1, 447–456.

    Google Scholar 

  • Güntert, P., Berndt, K. and Wüthrich, K. (1993) J. Biomol. NMR, 3, 601–606.

    Google Scholar 

  • Guruprasad, L., Dhanaraj, V., Timm, D., Blundell, T.L., Gout, I. and Waterfield, M.D. (1995) J. Mol. Biol., 248, 856–866.

    Google Scholar 

  • Hyberts, S.G., Goldberg, M.S., Havel, T.F. and Wagner, G. (1992) Protein Sci., 1, 736–751.

    Google Scholar 

  • Ikura, M., Kay, L.E., Tschudin, R. and Bax, A. (1990) J. Magn. Reson., 86, 204–209.

    Google Scholar 

  • Kabsch, W. and Sander, Ch. (1983) Biopolymers, 22, 2577–2637.

    CAS  PubMed  Google Scholar 

  • Kay, L.E., Torchia, D.A. and Bax, A. (1989) Biochemistry, 28, 8972–8979.

    Google Scholar 

  • Klausner, R.D. and Samelson, L.E. (1991) Cell, 64, 875–878.

    Google Scholar 

  • Kohda, D., Hatanaka, H., Odaka, M., Mandiyan, V., Ullrich, A., Schlessinger, J. and Inagaki, F. (1993) Cell, 72, 953–960.

    Google Scholar 

  • Kohda, D., Terasawa, H., Ichikawa, S., Ogura, K., Hatanaka, H., Mandiyan, V., Ullrich, A., Schlessinger, J. and Inagaki, F. (1994) Structure, 2, 1029–1040.

    Google Scholar 

  • Koyama, S., Yu, H., Dalgarno, D.C., Shin, T.B., Zydowsky, L.D. and Schreiber, S.L. (1993) Cell, 72, 945–952.

    Google Scholar 

  • Kuboniwa, H., Grzesiek, S., Delaglio, F. and Bax, A. (1994). J. Biomol. NMR, 4, 871–878.

    Google Scholar 

  • Lim, W.A., Richards, F.M. and Fox, R.O. (1994) Nature, 372, 375–379.

    Google Scholar 

  • MacArthur, M.W. and Thornton, J.M. (1993) Proteins, 17, 232–251.

    Google Scholar 

  • Marion, D., Driscoll, P.C., Kay, L.E., Wingfield, P.T., Bax, A., Gronenborn, A.M. and Clore, G.M. (1989a) Biochemistry, 28, 6150–6156.

    Google Scholar 

  • Marion, D., Kay, L.E., Sparks, S.W., Torchia, D.A. and Bax, A. (1989b) J. Am. Chem. Soc., 111, 1515–1517.

    Google Scholar 

  • Merritt, E.A. and Murphy, M.E.P. (1994) Acta Crystallogr., D50, 869–873.

    Google Scholar 

  • Montelione, G.T., Arnold, E., Meinwald, Y.C., Stimson, E.R., Denton, J.B., Huang, S.G., Clardy, J. and Scheraga, H.A. (1984) J. Am. Chem. Soc., 106, 7946–7958.

    Google Scholar 

  • Musacchio, A., Noble, M., Pauptit, R., Wierenga, R. and Saraste, M. (1992) Nature, 359, 851–855.

    Google Scholar 

  • Musacchio, A., Saraste, M. and Wilmanns, M. (1994) Nature Struct. Biol., 1, 546–551.

    Google Scholar 

  • Müller, K., Ammann, H.J., Doran, D.M., Gerber, P.R., Gubernator, K. and Schrepfer, G. (1988) Commun. Soc. Chim. Belg., 97, 655–667.

    Google Scholar 

  • Neri, D., Szyperski, T., Otting, G., Senn, H. and Wüthrich, K. (1989) Biochemistry, 28, 7510–7516.

    Google Scholar 

  • Nilges, M., Clore, G.M. and Gronenborn, A.M. (1988) FEBS Lett., 229, 317–324.

    Google Scholar 

  • Nilges, M. (1993) Proteins, 17, 297–309.

    Google Scholar 

  • Nilges, M. (1995) J. Mol. Biol. 245, 645–660.

    Google Scholar 

  • Noble, M.E.M., Musacchio, A., Saraste, M., Courtneidge, S.A. and Wierenga, R.K. (1993) EMBO J. 12, 2617–2624.

    Google Scholar 

  • Ostergaard, H.L., Shackelford, D.A., Hurley, T.R., Johnson, P., Hyman, R., Sefton, B.M. and Trowbridge, I.S. (1989) Proc. Natl. Acad. Sci. USA, 86, 8959–8963.

    Google Scholar 

  • Pawson, T. (1995) Science, 373, 573–580.

    Google Scholar 

  • Rance, M., Sørensen, O.W., Bodenhausen, G., Wagner, G., Ernst, R.R. and Wüthrich, K. (1983) Biochem. Biophys. Res. Commun., 117, 479–485.

    Google Scholar 

  • Rudd, C.E., Anderson, P., Morimoto, C., Streuli, M. and Schlossman, S.F. (1989) Immunol. Rev., 111, 225–266.

    Google Scholar 

  • Sefton, B.M. (1991) Oncogene, 6, 683–686.

    Google Scholar 

  • Senn, H., Werner, B., Messerle, B.A., Weber, C., Traber, R. and Wüthrich, K. (1989) FEBS Lett., 249, 113–118.

    Google Scholar 

  • Songyang, Z., Shoelson, S.E., Chaudhuri, M., Gish, G., Pawson, T., Haser, W.G., King, F., Roberts, T., Ratnofsky, S., Lechleider, R.J., Neel, B.G., Birge, R.B., Fajardo, J.E., Chou, M.M., Hanahusa, H., Schaffhausen, B. and Cantley, L.C. (1993), Cell, 72, 767–778.

    Google Scholar 

  • Szyperski, T. (1995) Eur. J. Biochem., 232, 433–448.

    Google Scholar 

  • Veillette, A., Foss, F.M., Sausville, E.A., Bolen, J.B. and Rosen, N. (1987) Oncogene Res., 1, 357–374.

    Google Scholar 

  • Veillette, A., Bookman, M.A., Horak, E.M. and Bolen, J.B. (1988) Cell, 55, 301–308.

    Google Scholar 

  • Veillette, A., Bookman, M.A., Horak, E.M., Samelson, L.E. and Bolen, J.B. (1989) Nature, 338, 257–259.

    Article  CAS  PubMed  Google Scholar 

  • Vuister, G.W. and Bax, A. (1992) J. Magn. Reson., 98, 428–435.

    Google Scholar 

  • Wishart, D.S., Bigam, C.G., Yao, J., Abildgaard, F., Dyson, H.J., Oldfield, E., Markley, J.L. and Sykes, B.D. (1995) J. Biomol. NMR, 6, 135–140.

    Google Scholar 

  • Wittekind, M., Mapelli, C., FarmerII, B.T., Suen, K.-L., Goldfarb, V., Tsao, J., Lavoie, T., Barbacid, M., Meyers, C.A. and Müller, L. (1994) Biochemistry, 33, 13531–13539.

    Google Scholar 

  • Wu, X., Knudsen, B., Feller, S.M., Zheng, J., Sali, A., Cowburn, D., Hanafusa, H. and Kuriyan, J. (1995) Structure, 3, 215–226.

    Google Scholar 

  • Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York, NY.

    Google Scholar 

  • Yang, Y.S., Garbay, C., Duchesne, M., Cornille, F., Jullian, N., Fromage, N., Tocque, B. and Roques, B.P. (1994) EMBO J., 13, 1270–1279.

    Google Scholar 

  • Yu, H., Rosen, M.K., Shin, T.B., Seidel-Dugan, C., Brugge, J.S. and Schreiber, S.L. (1992) Science, 258, 1665–1668.

    Google Scholar 

  • Yu, H., Chen, J.K., Feng, S., Dalgarno, D.C., Brauer, A.W. and Schreiber, S.L. (1994) Cell, 76, 933–945.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiroaki, H., Klaus, W. & Senn, H. Determination of the solution structure of the SH3 domain of human p56 Lck tyrosine kinase. J Biomol NMR 8, 105–122 (1996). https://doi.org/10.1007/BF00211158

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00211158

Keywords

Navigation