Skip to main content
Log in

Detection of more than 50 different CFTR mutations in a large group of German cystic fibrosis patients

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

We have conducted a comprehensive study of the molecular basis of cystic fibrosis (CF) in 350 German CF patients. A screening approach based on single-strand conformation analysis and direct sequencing of genomic polymerase chain reaction products has allowed us to detect the molecular defects on 95.4% of the CF chromosomes within the coding region and splice sites of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The spectrum of sequence changes comprises 54 different mutations, including 17 missense mutations, 14 nonsense mutations, 11 frameshift mutations, 10 splice site variants and two amino acid deletions. Eleven of these mutations have not previously been described. Our results reflect the marked mutational heterogeneity of CF in a large sample of patients from a non-isolated population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson MP, Berger HA, Rich DP, Gregory RJ, Smith AE, Welsh MJ (1991) Nucleoside triphosphates are required to open the CFTR chloride channel. Cell 67:775–784

    Google Scholar 

  • Bear CE, Li C, Kartner N, Bridges RJ, Jensen TJ, Ramjeesingh M, Riordan JR (1992) Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell 68:809–818

    Article  CAS  PubMed  Google Scholar 

  • Beaudet AL, Tsui L-C (1993) A suggested nomenclature for designating mutations. Hum Mutat 2:245–248

    Google Scholar 

  • Boat TF, Welsh MJ, Beaudet AL (1989) Cystic fibrosis. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic basis of inherited disease, 6th edn. McGraw-Hill, New York, pp 2649–2680

    Google Scholar 

  • Bozon D, Zielenski J, Rininsland F, Tsui L-C (1994) Identification of four new mutations in the cystic fibrosis transmembrane conductance regulator gene: I148T, L1077P, Y1092X, 2183AA → G. Hum Mutat 3:330–332

    Google Scholar 

  • Chevalier-Porst F, Bonardot AM, Gilly R, Chazalette JP, Mathieu M, Bozon D (1994) Mutation analysis in 600 French cystic fibrosis patients. J Med Genet 31:541–544

    Google Scholar 

  • Cheadle JP, Goodchild MC, Meredith AL (1993) Direct sequencing of the complete CFTR gene: the molecular characterisation of 99.5% of CF chromosomes in Wales. Hum Mol Genet 2:1551–1556

    Google Scholar 

  • Cheng SH, Rich DP, Marshall J, Gregory RJ, Welsh MJ, Smith AE (1991) Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell 66:1027–1036

    Google Scholar 

  • Chillon M, Nunes V, Estivill X (1991) SSCP-polymorphism in intron 12 of the CFTR gene recognized by BclI. Nucleic Acids Res 19:6343

    Google Scholar 

  • Chillon M, Palacio A, Nunes V, Estivill X (1992) A rare DNA variant in exon 15 of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Hum Genet 90:474

    CAS  PubMed  Google Scholar 

  • Claustres M, Gerrard B, White MB, Desgeorges M, Kjellberg P, Rollin B, Dean M (1992) A rare mutation (1078delT) in exon 7 of the CFTR gene in a Southern French adult with cystic fibrosis. Genomics 13:907–908

    Google Scholar 

  • Claustres M, Laussel M, Desgeorges M, Giansily M, Culard J-F, Razakatsara G, Demaille J (1993) Analysis of the 27 exons and flanking regions of the cystic fibrosis gene: 40 different mutations account for 91. 2% of the mutant alleles in Southern France. Hum Mol Genet 2:1209–1213

    Google Scholar 

  • Cuppens H, Marynen P, De Boeck C, Cassiman JJ (1993) Detection of 98.5% of the mutations in 200 Belgian cystic fibrosis alleles by reverse dot-blot and sequencing of the complete coding region and exon/intron junctions of the CFTR gene. Genomics 18:693–697

    Google Scholar 

  • Cutting GR, Kasch LM, Rosenstein BJ, Zielenski J, Tsui L-C, Antonarakis SE, Kazazian HH jr (1990) A cluster of cystic fibrosis mutations in the first nucleotide-binding fold of the cystic fibrosis conductance regulator protein. Nature 346:366–369

    Google Scholar 

  • Cutting GR, Curristin SM, Nash E, Rosenstein BJ, Lerer I, Abeliovich D, Hill A, Graham C (1992) Analysis of four diverse population groups indicate that a subset of cystic fibrosis mutations occur in common among Caucasians. Am J Hum Genet 50:1184–1195

    Google Scholar 

  • Dean M, White M, Amos J, Gerrard B, Stewart C, Khaw KT, Leppert M (1990) Multiple mutations in highly conserved residues are found in mildly affected cystic fibrosis patients. Cell 61:863–870

    Google Scholar 

  • Devoto M, Ronchetto P, Fanen P, Orriols JJT, Romeo G, Goossens M, Ferrari M, Magnani C, Seia M, Cremonesi L (1991) Screening for non-deltaF508 mutations in five exons of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in Italy. Am J Hum Genet 48:1127–1132

    Google Scholar 

  • Dörk T, Wulbrand U, Richter T, Neumann T, Wolfes H, Wulf B, Maaß G, Tümmler B (1991) Cystic fibrosis with three mutations in the cystic fibrosis transmembrane conductance regulator gene. Hum Genet 87:441–446

    Google Scholar 

  • Dörk T, Neumann T, Wulbrand U, Wulf B, Kälin N, Maass G, Krawczak M, Guillermit H, Ferec C, Hörn G, Klinger K, Kerem BS, Zielenski J, Tsui L-C, Tümmler B (1992 a) Intraand extragenic marker haplotypes of CFTR mutations in cystic fibrosis families. Hum Genet 88:417–425

    Google Scholar 

  • Dörk T, Kälin N, Stuhrmann M, Schmidtke J, Tümmler B (1992 b) A termination mutation (2143delT) in the CFTR gene of German cystic fibrosis patients. Hum Genet 90:279–284

    Google Scholar 

  • Dörk T, Wulbrand U, Tümmler B (1993 a) Four novel cystic fibrosis mutations in splice junction sequences affecting the CFTR nucleotide binding folds. Genomics 15:688–691

    Google Scholar 

  • Dörk T, Fislage R, Rappen U, Tümmler B (1993 b) Severe splice site mutation preceding exon 9 of the CFTR gene. Hum Mol Genet 2:1313–1314

    Google Scholar 

  • Dörk T, Will K, Demmer A, Tümmler B (1993 c) A donor splice mutation (405+1 G→A) in cystic fibrosis associated with exon skipping in epithelial CFTR mRNA. Hum Mol Genet 2:1965–1966

    Google Scholar 

  • Dörk T, Fislage R, Tümmler B (1993 d) Complex mutation 4114 ATA → TT in exon 22 of the cystic fibrosis gene CFTR. Hum Mutat 2:489–491

    Google Scholar 

  • Dörk T, Fislage R, Neumann T, Wulf B, Tümmler B (1994 a) Exon 9 of the CFTR gene: splice site haplotypes and cystic fibrosis mutations. Hum Genet 93:67–73

    Google Scholar 

  • Dörk T, Will K, Grade K, Krawczak M, Tümmler B (1994 b) A 32 bp deletion (2991del32) in the cystic fibrosis gene associated with CFTR mRNA reduction. Hum Mutat 4:65–70

    Google Scholar 

  • Estivill X, Scambler PJ, Wainwright BJ, Hawley K, Frederick P, Schwartz M, Baiget M, Kere J, Williamson R, Farrall M (1987) attern of polymorphism and linkage disequilibrium for cystic fibrosis. Genomics 1:257–263

    Google Scholar 

  • Fanen P, Ghanem N, Vidaud M, Besmond C, Martin J, Costes B, Plassa F, Goossens M (1992) Molecular characterization of cystic fibrosis: 16 novel mutations identified by analysis of the whole cystic fibrosis conductance transmembrane regulator (CFTR) coding regions and splice site junctions. Genomics 13:770–776

    Google Scholar 

  • Ferec C, Audrezet MP, Mercier B, Guillermit H, Mouiller P, Quere I, Verlinguer C (1992) Detection of over 98% cystic fibrosis mutations in a Celtic population. Nature Genet 1:188–191

    Google Scholar 

  • Fost N (1992) Ethical implications of screening asymptomatic individuals. FASEB J 6:2813–2817

    Google Scholar 

  • Gasparini P, Nunes V, Savoia A, Dognini M, Morral N, Gaona A, Bonizzato A, Chillon M, Sangiulo F, Novelli G, Dallapiccola B, Pignatti PF, Estivill X (1991) The search for South European cystic fibrosis mutations: identification of two new mutations, four variants and intronic sequences. Genomics 10:193–200

    Google Scholar 

  • Glavac D, Dean M (1993) Optimization of the single-strand conformation polymorphism (SSCP) technique for detection of point mutations. Hum Mutat 2:404–414

    Google Scholar 

  • Gross-Bellard M, Dudet P, Chambon P (1973) Isolation of highmolecular-weight DNA from mammalian cells. Eur J Biochem 36:32–38

    Google Scholar 

  • Hayashi K, Yandell DW (1993) How sensitive is PCR-SSCP? Hum Mutat 2:338–346

    Google Scholar 

  • Jones CT, McIntosh I, Keston M, Ferguson A, Brock DJH (1992) Three novel mutations in the cystic fibrosis gene detected by chemical cleavage: analysis of variant splicing and a nonsense mutation. Hum Mol Genet 1:11–17

    Google Scholar 

  • Kälin N, Dörk T, Tümmler B (1992 a) A cystic fibrosis allele encoding missense mutations in both nucleotide binding folds of the cystic fibrosis transmembrane conductance regulator. Hum Mutat 1:204–210

    Google Scholar 

  • Kälin N, Dörk T, Bozon D, Tümmler B (1992 b) A novel frameshift mutation in the cystic fibrosis gene (435insA) demonstrates the ambiguity of restriction analysis for mutation screening. Hum Mol Genet 1:545–546

    Google Scholar 

  • Kerem BS, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui L-C (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245:1073–1080

    Google Scholar 

  • Kerem BS, Zielenski J, Markiewicz D, Bozon D, Gazit E, Yahaf J, Kennedy D, Riordan JR, Collins FS, Rommens JM, Tsui L-C (1990) Identification of mutations in regions corresponding to the two putative nucleotide (ATP-) binding folds of the cystic fibrosis gene. Proc Natl Acad Sci USA 87:8447–8451

    Google Scholar 

  • Kiesewetter S, Macek M jr, Davis C, Curristin MS, Chu C-S, Graham C, Shrimpton AE, Cashman SM, Tsui L-C, Mickle J, Amos J, Highsmith WE jr, Shuber A, Witt DR, Crystal RG, Cutting GR (1993) A mutation in CFTR produces different phenotypes depending on the chromosomal background. Nature Genet 5:274–277

    Google Scholar 

  • Kobayashi K, Knowles M, O'Brien WE, Beaudet AL (1990) Benign missense variations in the cystic fibrosis gene. Am J Hum Genet 47:611–615

    Google Scholar 

  • Kristidis P, Bozon D, Corey M, Markiewicz D, Rommens JM, Tsui L-C, Durie P (1992) Genetic determination of exocrine pancreatic function in cystic fibrosis. Am J Hum Genet 50:1178–1184

    Google Scholar 

  • Kubesch P, Dörk T, Wulbrand U, Kälin N, Neumann T, Wulf B, Geerlings H, Weißbrodt H, Hardt H von der, Tümmler B (1993) Genetic determinants of cystic fibrosis airways' colonization with Pseudomonas aeruginosa. Lancet 341:189–193

    Google Scholar 

  • Liechti-Gallati S, Bonsall I, Malik N, Schneider V, Kraemer LG, Ruedeberg A, Moser H, Kraemer R (1992) Genotype/phenotype association in cystic fibrosis: analyses of the ΔF508, R553X, and 3905insT mutations. Pediatr Res 32:175–178

    Google Scholar 

  • Mercier B, Lissens W, Audrezet MP, Bonduelle M, Liebars I, Ferec C (1993) Detection of more than 94% cystic fibrosis mutations in a sample of Belgian population and identification of four novel mutations. Hum Mutat 2:16–20

    Google Scholar 

  • Morral N, Nunes V, Casals T, Estivill X (1991) CA/GT microsatellite alleles within the cystic fibrosis transmembrane conductance regulator (CFTR) gene are not generated by unequal crossingover. Genomics 10:692–698

    Google Scholar 

  • Nunes V, Chillon M, Dörk T, Tümmler B, Casals T, Estivill X (1993) A new missense mutation (E92K) in the first transmembrane domain of the CFTR gene causes a benign cystic fibrosis phenotype. Hum Mol Genet 2:79–80

    Google Scholar 

  • Ober C, Lester LA, Mott C, Billstrand C, Lemke A, Ven K van der, Marcus S, Kraut J, Lloyd-Still J, Booth C (1992) Ethnic heterogeneity and cystic fibrosis transmembrane regulator (CFTR) mutation frequencies in Chicago-area CF families. Am J Hum Genet 51:1344–1348

    Google Scholar 

  • Orita M, Suzuki Y, Sekiya T, Hayashi K (1989) Rapid and sensitive detection of point mutations and DNA polymorphisms using polymerase chain reaction. Genomics 5:874–879

    CAS  PubMed  Google Scholar 

  • Osborne L, Knight RA, Santis G, Hodson M (1991) A mutation in the second nucleotide binding fold of the cystic fibrosis gene. Am J Hum Genet 48:608–612

    Google Scholar 

  • Riordan JR, Rommens JM, Kerem BS, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL, Drumm ML, Iannuzzi ML, Collins FS, Tsui L-C (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073

    CAS  PubMed  Google Scholar 

  • Rommens JM, Iannuzzi MC, Kerem BS, Drumm ML, Melmer G, Dean M, Rozmahel R, Cole JL, Kennedy D, Hidaka N, Zsiga M, Buchwald M, Riordan JR, Tsui L-C, Collins FS (1989) Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245:1059–1065

    Google Scholar 

  • Rommens JM, Kerem BS, Greer W, Chang P, Tsui L-C, Ray P (1990) Rapid nonradioactive detection of the major CF mutation. Am J Hum Genet 46:395–396

    Google Scholar 

  • Santis G, Osborne L, Knight RA, Hodson M (1990) Independent genetic determinants of pancreatic and pulmonary status in cystic fibrosis. Lancet 336:1081–1084

    Google Scholar 

  • Shackleton S, Beards F, Harris A (1992) Detection of novel and rare mutations in exon 4 of the cystic fibrosis gene by SSCP. Hum Mol Genet 1:439–440

    Google Scholar 

  • Sheffield VC, Beck JS, Kwitek AE, Sandstrom DW, Stone EM (1993) The sensitivity of single-strand conformation polymorphism analysis for the detection of single base substitutions. Genomics 16:325–332

    Google Scholar 

  • Sheppard DN, Rich DP, Ostedgaard LS, Gregory RJ, Smith AE, Welsh MJ (1993) Mutations in CFTR associated with mild disease form Cl- channels with altered pore properties. Nature 362:160–164

    Google Scholar 

  • Super M, Schwarz MJ (1992) Mutations of the cystic fibrosis gene locus within the population of the Northwest of England. Eur J Pediatr Res 151:108–111

    Google Scholar 

  • Tabcharani JA, Rommens JM, Hou X-Y, Chang X-B, Tsui L-C, Riordan JR, Hanrahan JW (1993) Multi-ion pore behaviour in the CFTR chloride channel. Nature 366:79–82

    Google Scholar 

  • The Cystic Fibrosis Genotype-Phenotype Consortium (1993) Correlation between genotype and phenotype in cystic fibrosis: analysis of seven common mutations. N Engl J Med 329:1308–1313

    Google Scholar 

  • Tsui L-C (1992 a) The spectrum of cystic fibrosis mutations. Trends Genet 8:392–398

    Google Scholar 

  • Tsui L-C (1992 b) Mutations and sequence variations detected in the cystic fibrosis transmembrane conductance regulator (CFTR) gene: a report from the Cystic Fibrosis Genetic Analysis Consortium. Hum Mutat 1:197–203

    Google Scholar 

  • Tucker SJ, Tannahill D, Higgins CF (1992) Identification and developmental expression of the Xenopus laevis cystic fibrosis transmembrane conductance regulator gene. Hum Mol Genet 1:77–82

    Google Scholar 

  • Vidaud M, Fanen P, Martin J, Ghanem N, Nicolas S, Goossens M (1990) Three mutations in the CFTR gene in French cystic fibrosis patients: identification by denaturing gradient gel electrophoresis. Hum Genet 85:446–449

    Google Scholar 

  • Wilfond BS, Fost N (1990) The cystic fibrosis gene: medical and social implications for heterozygote detection. J Am Med Assoc 263:2777–2783

    Google Scholar 

  • Will K, Dörk T, Stuhrmann M, Meitinger T, Bertele-Harms R, Tümmler B, Schmidtke J (1994) A novel exon in the cystic fibrosis transmembrane conductance regulator gene activated by the nonsense mutation E92X in airway epithelial cells of patients with cystic fibrosis. J Clin Invest 93:1852–1859

    Google Scholar 

  • Workshop on Population Screening for the Cystic Fibrosis Gene (1990) Statement from the National Institutes of Health Workshop on population screening for the cystic fibrosis gene. N Engl J Med 323:70–71

    Google Scholar 

  • Zielenski J, Rozmahel R, Bozon D, Kerem BS, Grzelczak Z, Riordan JR, Rommens JM, Tsui L-C (1991 a) Genomic DNA sequence of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Genomics 10:214–228

    Google Scholar 

  • Zielenski J, Bozon D, Kerem B, Markiewicz D, Durie P, Rommens JM, Tsui L-C (1991 b) Identification of mutations in exons 1 through 8 of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Genomics 10:229–235

    Google Scholar 

  • Zielenski J, Markiewicz D, Rininsland F, Rommens J, Tsui L-C (1991 c) A cluster of highly polymorphic dinucleotide repeats in intron 17b of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Am J Hum Genet 49:1256–1262

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dörk, T., Mekus, F., Schmidt, K. et al. Detection of more than 50 different CFTR mutations in a large group of German cystic fibrosis patients. Hum Genet 94, 533–542 (1994). https://doi.org/10.1007/BF00211022

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00211022

Keywords

Navigation