Skip to main content
Log in

A genetic study of the human low-voltage electroencephalogram

  • Original Investigations
  • Published:
Human Genetics Aims and scope Submit manuscript

Summary

The studied phenotype, the low-voltage electroencephalogram (LVEEG), is characterized by the absence of an alpha rhythm from the resting EEG. In previous studies, evidence was found for a simple autosomal-dominant mode of inheritance of the LVEEG. Such a polymorphism in brain function can be used as a research model for the stepwise elucidation of the molecular mechanism involved in those aspects of neuronal activity that are reflected in the EEG. Linkage with the variable number of tandem repeats (VNTR) marker CMM6 (D20S19) and localization of an LVEEG (EEGV1) gene on 20q have previously been reported, and genetic heterogeneity has been demonstrated. This latter result has been corroborated by studing new marker (MS214). The phenotype of the LVEEG is described here in greater detail. Its main characteristic is the absence of rhythmic alpha activity, especially in occipital leads, whereas other wave forms such as beta or theta waves may be present. Analysis of 17 new families (some of them large), together with 60 previously described nuclear families, supports the genetic hypothesis of an autosomal-dominant mode of inheritance. Problems connected with the analysis of linkage heterogeneity, exclusion mapping, and the study of multipoint linkage are discussed. A possible explanation of the localization of LVEEG in the close vicinity of another gene influencing synchronization of the normal EEG, the gene for benign neonatal epilepsie, is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams A (1959) Studies on the flat electroencephalogram in man. EEG Clin Neurophysiol 11:35–41

    Google Scholar 

  • Andersen P, Andersson SA (1968) Physiologic basis of the alpharhythm. Appelton Century Crofts, New York

    Google Scholar 

  • Anokhin AP (1987) On the genetic nature of individual peculiarities of the whole-brain EEG organization. Sov J Psychol 1:649–657

    Google Scholar 

  • Anokhin AP (1988) Sources of individual variation in human electroencephalogram. In: Rusalov VM (eds) Individual psychological differences and brain electric activity (in Russian). Nauka, Moscow, pp 149–176

    Google Scholar 

  • Awata T, Shibasaki Y, Hirai H, Okabe Y, Kanazawa Y, Takaku F (1985) Restriction fragment length polymorphism of the insulin gene region in Japanese diabetic and non-diabetic subjects. Diabetologia 28:911–913

    Google Scholar 

  • Bell GI, Horita S, Karam JH (1984) A polymorphic locus near the human insulin gene is associated with insulin-dependent diabetes mellitus. Diabetes 33:176–183

    Google Scholar 

  • Bodrov VA, Malkin VB, Pokrovsky BL, Shpachenko DI (1984) Psychological selection of pilots and astronauts (in Russian). (Problems of space biology series, vol 48). Nauka, Moscow

    Google Scholar 

  • Cooper R, Winter AL, Crow HJ, Walter WG (1965) Comparison of subcortical, cortical and scalp activity using chronically indwelling electrodes in man. EEG Clin Neurophysiol 18:217–228

    Google Scholar 

  • Davidson EH, Britten RJ (1979) Regulation of gene expression: possible role of repetitive sequences. Science 204:1052–1059

    Google Scholar 

  • Delgado-Escueta AV, White R, Greenberg DA, Treiman LJ (1986) Looking for epilepsy in genes: clinical and molecular genetic studies. In: Delgado-Escueta AV, Ward AA, Woodbury DM, Porter RJ (eds) Advances in neurology, vol 44. Raven Press, New York, pp 77–96

    Google Scholar 

  • Dieker H (1967) Untersuchungen zur Genetik besonders regelmäßiger hoher Alphawellen in EEG des Menschen. Humangenetik 4:189–216

    Google Scholar 

  • Edwards JH (1987) Exclusion mapping. J Med Genet 24:539–543

    Google Scholar 

  • Friedl W, Vogel F (1979) Geschlechtsunterschiede im normalen Ruhe-EEG bei jungen Erwachsenen. Z EEG-EMG 10:70–79

    Google Scholar 

  • Gibbs FA, Gibbs EL, Lennox WG (1943) Electroencephalographic classification of epileptic patients and control subjects. Arch Neurol Psychiatry 50:111–128

    Google Scholar 

  • Harvald B (1951) On the possibility of predicting Huntington's chorea by electroencephalographic study. Am J Psychiatry 108:295–297

    Google Scholar 

  • Hirvasniemi A, Leisti J (1991) Inherited form of childhood epilepsy associated with mental retardation (abstract). In: Epstein CJ (eds) 8th International Congress Human Genetics, Washington, Abstract no. 756, p 147

  • Juel-Nielsen N, Harvald B (1958) The encephalogram in uniovular twins brought up apart. Acta Genet (Basel) 8:57–64

    Google Scholar 

  • Lathrop GM, Lalouel JM, Julier C, Ott J (1984) Strategies for multilocus linkage analysis in humans. Proc Nat Acad Sci USA 81:3443–3446

    Google Scholar 

  • Ledbetter DH, Ledbetter SA, Tuinen P van, Summers KM, Nakamura Y (1988) Two VNTR probes reveal HTF islands and conserved sequences in a microdeletion syndrome (Miller-Dieker). Am J Hum Genetics 43 [Suppl]:A111

    Google Scholar 

  • Leppert M, Anderson VE, Quattlebaum T, Stauffer D, O'Connel P, Nakamura Y, Lalouel JM, White R (1989) Benign familial neonatal convulsions linked to genetic markers on chromosome 20. Nature 337:647–648

    Google Scholar 

  • Lopes da Silva FH, Storm van Leeuwen W (1977) The cortical source of alpha-rhythm. Neurosci Lett 6:237–241

    Google Scholar 

  • Lopes da Silva FH, Vos JE, Mooibroek J, Van Rotterdam A (1980) Relative contributions of intracortical and thalamocortical processes in the generation of alpha-rhythms, revealed by partial coherence analysis. Electroencephalogr Clin Neurophysiol 50:449–456

    Google Scholar 

  • Lykken DT, Tellegen A, Iacono WG (1982) EEG spectra in twins: evidence for a neglected mechanism of genetic determination. Physiol Psychol 10:60–65

    Google Scholar 

  • Malafosse A, Dulac O, Leboyer M, Schnittger S, Hansmann I, Mallet J (1990) Linkage studies of benign familial neonatal convulsions in six French families. Epilepsia 31:816

    Google Scholar 

  • Morton NE (1955) Segmential tests for the detection of linkage. Am J Hum Genet 7:277–318

    Google Scholar 

  • Niedermeyer E (1987) The normal EEG of the waking adult. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography. Basic principles, clinical applications and related fields. Freeman, Baltimore Munich pp 97–117

    Google Scholar 

  • Ott J (1983) Linkage analysis and family classification under heterogeneity. Ann Hum Genet 47:311–320

    Google Scholar 

  • Ott J (1985) Analysis of human genetic linkage. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Pine I, Pine M (1953) Clinical analysis of patients with low-voltage EEG. J Nerv Ment Dis 117:191–198

    CAS  PubMed  Google Scholar 

  • Pokrovskaya ZA, Insarova NG (1988) The EEG characteristics of patients with Huntington's chorea and their clinically healthy relatives (in Russian). Zh Nevropatol Psikhiatr 88:22–26

    Google Scholar 

  • Propping P (1977) Genetic control of ethanol action in the central nervous system: a EEG study in twins. Hum Genet 35:309–334

    Google Scholar 

  • Propping P (1989) Pschiatrische Genetik. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Propping P, Friedl W, Nebel B, Feige A (1979) Plasma DBH, platelet MAO and proteins of red blood cell membranes in individuals with variants of the normal EEG. Neuropsychobiology 5:309–316

    Google Scholar 

  • Propping P, Friedl W, Pluto R (1980a) Further evidence for correlation of EEG synchronization and plasma DBH activity in normal subjects. J Neural Transm 49:167–178

    Google Scholar 

  • Propping P, Krüger J, Janah A (1980b) Effect of alcohol on genetically determined variants of the normal electroencephalogram. Psychiatry Res 2:85–98

    Google Scholar 

  • Reinke G (1966) Zur genetischen Grundlage der sogenannten Grenzfälle des Niederspannungs-EEG und der diffusen β-Wellen bei jungen Männern. Med Dissertation, Heidelberg

  • Rohracher H (1950) Ein einfacher Index zur Auswertung der α-Wellen des Electroencephalograms. Arch Psychiatr Nervenheilkd 184:487–492

    Google Scholar 

  • Ryan SG, Wiznitzer M, Hollman C, Torres MC, Szekeresova M, Schneider S (1991) Benign familial neonatal convulsions: evidence for clinical and genetic heterogeneity. Ann Neurol 29:469–473

    Google Scholar 

  • Shevchenko YG (1972) Development of human brain cortex in the light of ontoand philogenetic relationships (in Russian). Medizina, Moscow

    Google Scholar 

  • Schiffmann R, Shapira Y, Ryan SG (1991) An autosomal recessive form of benign familial neonatal seizures. Clin Genet 40:467–470

    Google Scholar 

  • Smith SM (1959) Discrimination between electroencephalograph recordings of normal females and normal males. Ann Eugenet 18:344–350

    Google Scholar 

  • Smith SM, Penrose LB (1955) Monozygotic and diszygotic twin diagnosis. Ann Hum Genet 19:273–289

    Google Scholar 

  • Stassen HH, Bomben G, Propping P (1987) Genetics aspects of the EEG: an investigation into the within-pair similarity of monozygotic and dizygotic twins with a new method of analysis. Electroencephalogr Clin Neurophysiol 66:489–501

    Google Scholar 

  • Steinlein O, Anokhin A, Mao Y, Schalt E, Vogel F (1992) Localization of a gene for the human low-voltage EEG on 20q and genetic heterogeneity. Genomics 12:69–73

    Google Scholar 

  • Steriade M, Gloor P, Linás RR, Lopes da S≫va FH, Mesulam M-M (1990) Basic mechanisms of cerebral rhythmic activities. Electroencephalogr Clin Neurophysiol 76:481–508

    Google Scholar 

  • Synek V (1969) The non-reactive type of the low-voltage EEG. Psychiatr Neurol Neurochir 72:313–318

    Google Scholar 

  • Vogel F (1958) Über die Erblichkeit des normalen Elektroencephalogramms. Thieme, Stuttgart

    Google Scholar 

  • Vogel F (1962) Ergänzende Untersuchungen zur Genetik des menschlichen Niederspannungs-EEG. Dtsch Z Nervenheilkd 184:101–111

    Google Scholar 

  • Vogel F (1966a) Zur genetischen Grundlage fronto-präzentraler β-Wellengruppen im EEG des Menschen. Humangenetik 2:227–237

    Google Scholar 

  • Vogel F (1966b) Zur genetischen Grundlage occipitaler langsamer β-Wellen im EEG des Menschen. Humangenetik 2:238–245

    Google Scholar 

  • Vogel F (1970) The genetic basis of the normal human electroencephalogram (EEG). Humangenetik 10:91–114

    Google Scholar 

  • Vogel F (1986) Grundlagen und Bedeutung genetisch bedingter Variabilität des normalen menschlichen EEG. Z EEG-EMG 17:173–188

    Google Scholar 

  • Vogel F, Fujiya Y (1969) The incidence of some inherited EEG variants in normal Japanese and German males. Humangenetik 7:28–42

    Google Scholar 

  • Vogel F, Götze W (1959) Familienuntersuchungen zur Genetik des normalen Elektroencephalogramms. Dtsch Z Nervenheilkd 178:668–700

    Google Scholar 

  • Vogel F, Götze W (1962) Statistische Betrachtungen über die β-Wellen im EEG des Menschen. Dtsch Z Nervenheilkd 184:112–136

    Google Scholar 

  • Vogel F, Motulsky AG (1986) Human genetics: problems and approaches. 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Vogel F, Propping P (1981) Ist unser Schicksal mitgeboren? Severin and Siedler. Berlin

    Google Scholar 

  • Vogel F, Schalt E (1979) The electroencephalogram (EEG) as a research tool in human behaviour genetics: psychological examination in healthy males with various inherited EEG variants. III. Interpretation of the results. Hum Genet 47:81–111

    Google Scholar 

  • Vogel F, Götze W, Kubicki ST (1961) Der Wert von Familienuntersuchungen für die Beurteillung des Niederspannungs-EEG nach geschlossenen Schädel-Hirntraumen. Dtsch Z Nervenheilkd 182:337–354

    Google Scholar 

  • Vogel F, Wendt GG, Oepen H (1961b) Das EEG und das Problem einer Frühdiagnose der Chorea Huntington. Dtsch Z Nervenheilkd 182:355–361

    Google Scholar 

  • Vogel F, Schalt E, Krüger (1979a) The electroencephalogram (EEG) as a research tool in human behavior genetics: psychological examination in healthy males with various inherited EEG variants. II. Results. Hum Genet 47:47–80

    Google Scholar 

  • Vogel F, Schalt E, Krüger J, Propping P, Lehnen KF (1979b) The electroencephalogram (EEG) as a research tool in human behavior genetics: psychological examination in healthy males with various inherited EEG variants. I. Rationale of the study: material; methods. Heritability of test parameters. Hum Genet 47:1–45

    Google Scholar 

  • Vogel F, Krüger J, Schalt E (1981) Charakterisierung erblicher EEG-Varianten mit Hilfe der Amplituden-Intervall-Analyse. I. Varianten der alpha-Tätigkeit: Niederspannungs-EEG; Grenzfälle des Niederspannungs-EEG; Okzipitalc langsame β-Wellen: EEG mit monotonen u-Wellen. Z EEG-EMG 12:34–44

    Google Scholar 

  • Vogel F, Krüger J, Höpp H-P, Schalt E, Schnobel R (1986) Visually and auditorially evoked EEG potentials in carriers of four hereditary EEG variants. Hum Neurobiol 5:49–58

    Google Scholar 

  • Vogt P (1990) Potential genetic functions of tandem repeated DNA sequences blocks in the human genome are based on a highly conserved “chromatain folding code”. Hum Genet 84:301–336

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anokhin, A., Steinlein, O., Fischer, C. et al. A genetic study of the human low-voltage electroencephalogram. Hum Genet 90, 99–112 (1992). https://doi.org/10.1007/BF00210751

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00210751

Keywords

Navigation