Skip to main content
Log in

A Gly238Ser substitution in the α2 chain of type I collagen results in osteogenesis imperfecta type III

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

In general, osteogenesis imperfecta (brittle bone disease) is caused by heterozygous mutations in the genes encoding the α1 or α2 chains of type I collagen (COL1A1 and COL1A2, respectively). In this study we screened these genes in a proband presenting with the severe form (type III) of osteogenesis imperfecta for mutations which might result in the phenotype. Single-strand conformation polymorphism mapping analysis was used to identify a region suspected of harbouring the mutation and subsequent sequence analysis revealed a heterozygous G to A transition in the α2(I) gene of type I collagen in the individual. The resulting substitution of the glycine at position 238 of the α chain by serine is the most N-terminal yet reported for this chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bonadio J, Holbrook KA, Gelinas RE, Jacob J, Byers PH (1985) Altered triple helical structure of type I procollagen is associated with prolonged survival in lethal perinatal osteogenesis imperfecta. J Biol Chem 260: 1734–1742

    Google Scholar 

  • Byers PH (1990) Brittle bones — fragile molecules: disorders of collagen gene structure and expression. Trends Genet 6: 293–300

    Google Scholar 

  • Byers PH (1993) Osteogenesis imperfecta. In: Royce PM, Steinmann B (eds) Connective tissue and its heritable disorders: molecular, genetic and medical aspects. Wiley-Liss, New York, pp 317–350

    Google Scholar 

  • Byers PH, Wallis GA, Willing MC (1991) Osteogenesis imperfecta: translation of mutation to phenotype. J Med Genet 28: 433–442

    Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156–159

    Article  CAS  PubMed  Google Scholar 

  • Fertala A, Westerhausen A, Morris G, Rooney JE, Prockop DJ (1993) Two cysteine substitutions in procollagen I: a glycine replacement near the N-terminus of α1(I) chain causes lethal osteogenesis imperfecta and a glycine replacement in the α2(I) chain markedly destabilizes the triple helix. Biochem J 289: 195–199

    Google Scholar 

  • Kawasaki ES, Wang AM (1989) Detection of gene expression. In: Erlich HA (ed) PCR technology: principles and applications for DNA amplification. Stockton, New York, pp 89–97

    Google Scholar 

  • Kuivaniemi H, Tromp G, Chu M-L, Prockop DJ (1988) Structure of a full-length cDNA clone for the preproα2(I) chain of human type I collagen. Biochem J 252: 633–640

    Google Scholar 

  • Mackay K, Byers PH, Dalgleish R (1993a) An RT-PCR-SSCP screening strategy for detection of mutations in the gene encoding the α1 chain of type I collagen: application to four patients with osteogenesis imperfecta. Hum Mol Genet 2: 1155–1160

    Google Scholar 

  • Mackay K, Lund AM, Raghunath M, Steinmann B, Dalgleish R (1993b) SSCP detection of a Gly565Val substitution in the proα1(I) collagen chain resulting in osteogenesis imperfecta type II. Hum Genet 91: 439–444

    Google Scholar 

  • Mackay K, De Paepe A, Nuytinck L, Dalgleish R (1994) Substitution of glycine-172 by arginine in the α1 chain of type I collagen in a patient with osteogenesis imperfecta, type III. Hum Mutat 3: 324–326

    Google Scholar 

  • Marini JC, Wang Q, Filie JD, Lewis MB (1993) Mutations in α2(I) collagen support a regional model of the relationship between osteogenesis imperfecta genotype and phenotype. Fifth International Conference on Osteogenesis Imperfecta, Oxford, England, 27–30 September 1993, abstract 126

  • Murphy G, Ward ES (1989) Sequencing of double-stranded DNA. In: Howe CJ, Ward ES (eds) Nucleic acids sequencing: a practical approach. IRL Press, Oxford, pp 99–115

    Google Scholar 

  • Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989a) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 86: 2766–2770

    CAS  PubMed  Google Scholar 

  • Orita M, Suzuki Y, Sekiya T, Hayashi K (1989b) Rapid and sensitive detection of polymorphisms using the polymerase chain reaction. Genomics 5: 874–879

    CAS  PubMed  Google Scholar 

  • Patterson E, Smiley E, Bonadio J (1989) RNA sequence analysis of a perinatal lethal osteogenesis imperfecta mutation. J Biol Chem 264: 10083–10087

    Google Scholar 

  • Raghunath M, Mackay K, Dalgleish R, Steinmann B (1995) Genetic counselling on brittle grounds: recurring osteogenesis imperfecta due to parental mosaicism for a dominant mutation. Eur J Pediatr (in press)

  • Rose NJ, Mackay K, Byers PH, Dalgleish R (1993) A novel glycine to glutamic acid substitution at position 343 in the α2 chain of type I collagen in an individual with lethal osteogenesis imperfecta. Hum Mol Genet 2: 2175–2177

    Google Scholar 

  • Rose NJ, Mackay K, Byers PH, Dalgleish R (1994a) A Gly859Ser substitution in the triple helical domain of the α2 chain of type I collagen resulting in osteogenesis imperfecta type III in two unrelated individuals. Hum Mutat 3: 391–394

    Google Scholar 

  • Rose NJ, Mackay K, De Paepe A, Steinmann B, Punnett HH, Dalgleish R (1994b) Three unrelated individuals with perinatally lethal osteogenesis imperfecta resulting from identical Gly502Ser substututions in the α2-chain of type I collagen. Hum Genet 94: 497–503

    Google Scholar 

  • Valli M, Mottes M, Tenni R, Sangalli A, Gomez Lira M, Rossi A, Antoniazzi F, Cetta G, Pignatti PF (1991) A de novo G to T transversion in a pro-α(I) collagen gene for a moderate case of osteogenesis imperfecta. Substitution of cysteine for glycine 178 in the triple helical domain. J Biol Chem 266: 1872–1878

    Google Scholar 

  • Wenstrup RJ, Shrago-Howe AW, Lever LW, Phillips CL, Byers PH, Cohn DH (1991) The effects of different cysteine for glycine substitutions within α2(I) chains. Evidence of distinct structural domains within the type I collagen triple helix. J Biol Chem 266: 2590–2594

    Google Scholar 

  • Wirtz MK, Rao VH, Glanville RW, Labhard ME, Pretorius PJ, de Vries WN, de Wet WJ, Hollister DW (1993) A cysteine for glycine substitution at position 175 in an α1(I) chain of type 1 collagen produces a clinically heterogeneous form of osteogenesis imperfecta. Connect Tissue Res 29: 1–11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rose, N.J., Mackay, K., Byers, P.H. et al. A Gly238Ser substitution in the α2 chain of type I collagen results in osteogenesis imperfecta type III. Hum Genet 95, 215–218 (1995). https://doi.org/10.1007/BF00209405

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00209405

Keywords

Navigation