Skip to main content
Log in

The thermal expansion of ScAlO3 — A silicate perovskite analogue

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The crystal structure of ScAlO3 has been refined at temperatures up to 1100° C on the basis of x-ray powder diffraction data. The thermal expansion is adequately described by a Grüneisen-Debye model with the elastic Debye temperature and an effective Grüneisen parameter of 1.6. The volumetric thermal expansion of 3.0% between 10 and 1100° C, corresponding to a mean thermal expansion coefficient of 2.7 × 10−5 K−1, is entirely attributable to the expansion of the AlO6 octahedra. The interoctahedral angles, though not fixed by symmetry, do not vary significantly with temperature —indicating that the expansivities of the constituent AlO6 and distorted ScO8 polyhedra are well matched. Similar considerations of polyhedral expansivity suggest thermal expansion coefficients of ∼2 × 10−5K−1 for cubic CaSiO3 perovskite and a value between 2 × 10−5 K−1 and 4 × 10−5 K−1 for MgSiO3 perovskite. The lower value is consistent with the reconnaissance measurements for Mg0.9Fe0.1SiO3 (Knittle et al. 1986) below 350° C, with low-temperature measurements of single-crystal MgSiO3 (Ross and Hazen 1989), and with the results of some recent calculations. The markedly greater expansivity ∼4 × 10−5 K−1 measured at higher temperatures (350–570° C) by Knittle et al. is inconsistent with the simple Grüneisen-Debye quasiharmonic model and may reflect the marginal metastability of the orthorhombic perovskite phase. Under these circumstances, extrapolation of the measured expansivity is hazardous and may result in the under-estimation of lower mantle densities and the drawing of inappropriate inferences concerning the need for chemical stratification of the Earth's mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson OL (1988) A ferroelectric transition in the lower mantle? EOS (Trans Am Geophys Union) 69:1451

    Google Scholar 

  • Anderson OL, Schreiber E, Liebermann RC, Soga N (1968) Some elastic constant data on minerals relevant to geophysics. Rev Geophys 6:491–524

    Google Scholar 

  • Bass JD (1984) Elasticity of single-crystal SmAlO3, GdAlO3 and ScAlO3 perovskites. Phys Earth Planet Inter 36:145–156

    Article  Google Scholar 

  • Brown ID, Altermatt D (1985) Bond valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr B41:244–247

    Google Scholar 

  • Cohen RE (1987) Elasticity and equation of state of MgSiO3 perovskite. Geophys Res Lett 14:1053–1056

    Google Scholar 

  • Hazen RM, Finger LW (1982) Comparative crystal chemistry: temperature, pressure, composition and the variation of crystal structure. Wiley, New York, pp 115–146

    Google Scholar 

  • Hazen RM, Prewitt CT (1977) Effects of temperature and pressure on interatomic distances in oxygen-based minerals. Am Mineral 62:309–315

    Google Scholar 

  • Hemley RJ, Jackson MD, Gordon RG (1987) Theoretical study of the structure, lattice dynamics and equations of state of perovskite-type MgSiO3 and CaSiO3. Phys Chem Minerals 14:2–12

    Article  Google Scholar 

  • Hemley RJ, Cohen RE, Yeganeh-haeri A, Mao HK, Weidner DJ (1989) Raman spectroscopy and lattice dynamics of MgSiO3-perovskite at high pressure. In: Navrotsky A, Weidner DJ (eds) Perovskite: a structure of great interest of geophysics and materials science. AGU (Washington), pp 35–44

    Google Scholar 

  • Hill RJ (1984) X-ray powder diffraction profile refinement of synthetic hercynite. Am Mineral 69:937–942

    Google Scholar 

  • Hill RJ, Howard CJ (1986) A computer program for Rietveld analysis of fixed wavelength x-ray and neutron powder diffraction patterns. Aust. Atomic Energy Comm. (now ANSTO) Report No. M112, 14pp, Lucas Heights Res. Lab., Menai, New South Wales, Australia

    Google Scholar 

  • Horiuchi H, Ito E, Weidner DJ (1987) Perovskite-type MgSiO3: single-crystal x-ray diffraction study. Am Mineral 72:357–360

    Google Scholar 

  • International Tables for X-ray Crystallography (1974) Vol. IV. Kynoch Press, Birmingham (Present distributor D. Reidel, Dordrecht)

  • Ito H, Kawada K, Akimoto S (1974) Thermal expansion of stishovite. Phys Earth Planet Inter 8:277–281

    Google Scholar 

  • Jackson I (1983) Some geophysical constraints on the chemical composition of the Earth's lower mantle. Earth Planet Sci Lett 62:91–103

    Article  Google Scholar 

  • Jeanloz R, Knittle E (1989) Density and composition of the lower mantle. Philos Trans R Soc London A328: 377–389

    Google Scholar 

  • Jeanloz R, Thompson AB (1983) Phase transitions and mantle discontinuities. Rev Geophys Space Phys 21:51–74

    Google Scholar 

  • Jones LEA (1979) Pressure and temperature dependence of the single crystal elastic moduli of the cubic perovskite KMgF3. Phys Chem Minerals 4:23–42

    Article  Google Scholar 

  • Knittle E, Jeanloz R, Smith GL (1986) Thermal expansion of silicate perovskite and stratification of the Earth's mantle. Nature 319:214–216

    Article  Google Scholar 

  • Liebermann RC, Jones LEA, Ringwood AE (1977) Elasticity of aluminate, titanate, stannate and germanate compounds with the perovskite structure. Phys Earth Planet Inter 14:165–178

    Article  Google Scholar 

  • Liu X, Liebermann RC (1988) A2+B4+O3 perovskites at high temperature. EOS (Trans Am Geophys Union) 69:1451

    Google Scholar 

  • Liu L, Ringwood AE (1975) Synthesis of a perovskite-type polymorph of CaSiO3. Earth Planet Sci Lett 28:209–211

    Article  Google Scholar 

  • Liu X, Wang Y, Liebermann RC (1988) Orthorhombic-tetragonal phase transition in CaGeO3 perovskite at high temperature. Geophys Res Lett 15:1231–1234

    Google Scholar 

  • Meagher EP (1975) The crystal structures of pyrope and grossular at elevated temperatures. Am Mineral 60:218–228

    Google Scholar 

  • Megaw HD (1971) Crystal structures and thermal expansion. Mater Res Bull 6:1007–1018

    Article  Google Scholar 

  • Navrotsky A (1989) Thermochemistry of perovskites. In: Navrotsky A, Weidner DJ (eds) Perovskite: a structure of great interest to geophysics and materials science. AGU (Washington) pp 67–80

    Google Scholar 

  • Norrestam P (1969) Refinement of the crystal structure of scandium oxide from single-crystal diffractometer data. Ark Kemi 29:343–349

    Google Scholar 

  • Reid AF, Ringwood AE (1975) High-pressure modification of ScAlO3 and some geophysical implications. J Geophys Res 80:3363–3370

    Google Scholar 

  • Rietveld, H.M. (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Article  Google Scholar 

  • Ross NL, Hazen RM (1989) Single-crystal x-ray diffraction study of MgSiO3 perovskite from 77 to 400 K. Phys Chem Minerals 16:415–420

    Google Scholar 

  • Sasaki S, Prewitt CT, Liebermann RC (1983) The crystal structure of CaGeO3 perovskite and the crystal chemistry of GdFeO3-type perovskites. Am Mineral 68:1189–1198

    Google Scholar 

  • Sinclair W, Eggleton RA, Ringwood AE (1979) Crystal synthesis and structure refinement of high-pressure ScAlO3 perovskite. Z Krist 149:307–314

    Google Scholar 

  • Skinner BJ (1966) Thermal expansion. In: Clark SP Jr (ed) Handbook of Physical Constants. Geological Society of America Memoir, 97. Geol. Soc. Am., New York, pp 75–96

    Google Scholar 

  • Suzuki I, Ohtani E, Kumazawa M (1979) Thermal expansion of γ-Mg2SiO4. J Phys Earth 27:53–61

    Google Scholar 

  • Wolf GH, Bukowinski MST (1987) Theoretical study of the structural properties and equations of state of MgSiO3 and CaSiO3 perovskites: implications for lower mantle composition. In: Manghnani MH, Syono Y (eds) High pressure research in mineral physics. Terra (Tokyo)/Amer. Geophys. (Washington), pp 313–331

    Google Scholar 

  • Wyckoff RWG (1963) Crystal Structures, vol 2. Wiley-Interscience, New York, 588 pp

    Google Scholar 

  • Yamanaka T, Prewitt CT, Liebermann RC (1987) High temperature study of ScAlO3 orthorhombic perovskite. Mineral Soc Jpn (abstract)

  • Yeganeh-haeri A, Weidner DJ, Ito E (1989) Elasticity of MgSiO3 in the perovskite structure. Science 243:787–789

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, R.J., Jackson, I. The thermal expansion of ScAlO3 — A silicate perovskite analogue. Phys Chem Minerals 17, 89–96 (1990). https://doi.org/10.1007/BF00209229

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00209229

Keywords

Navigation