Skip to main content
Log in

The impact of reduced vacuolar invertase activity on the photosynthetic and carbohydrate metabolism of tomato

  • Published:
Planta Aims and scope Submit manuscript

Abstract

The impact of reduced vacuolar invertase activity on photosynthetic and carbohydrate metabolism was examined in tomato (Solanum lycopersicon L.). The introduction of a co-suppression construct (derived from tomato vacuolar invertase cDNA) produced plants containing a range of vacuolar invertase activities. In the leaves of most transgenic plants from line INV-B, vacuolar invertase activity was below the level of detection, whereas leaves from line INV-A and untransformed wild-type plants showed considerable variation. Apoplasmic invertase activity was not affected by the co-suppression construct. It has been suggested that, in leaves, vacuolar invertase activity regulates sucrose content and its availability for export, such that in plants with high vacuolar invertase activity a futile cycle of sucrose synthesis and degradation takes place. In INV-B plants with no detectable leaf vacuolar invertase activity, sucrose accumulated to much higher levels than in wild-type plants, and hexoses were barely detectable. There was a clear threshold relationship between invertase activity and sucrose content, and a linear relationship with hexose content. From these data the following conclusions can be drawn. (i) In INV-B plants sucrose enters the vacuole where it accumulates as hydrolysis cannot take place. (ii) There was not an excess of vacuolar invertase activity in the vacuole; the rate of sucrose hydrolysis depended upon the concentration of the enzyme. (iii) The rate of import of sucrose into the vacuole is also important in determining the rate of sucrose hydrolysis. The starch content of leaves was not significantly different in any of the plants examined. In tomato plants grown at high irradiance there was no impact of vacuolar invertase activity on the rate of photosynthesis or growth. The impact of the cosuppression construct on root vacuolar invertase activity and carbohydrate metabolism was less marked.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CaMV:

Cauliflower Mosaic Virus

WT:

wild type

References

  • Benhamou N, Grenier J, Chrispeels MJ (1991) Accumulation of β-fructosidase in the cell walls of tomato roots following infection by a fungal wilt pathogen. Plant Physiol 97: 739–750

    Google Scholar 

  • Bevan MW (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acid Res 12: 8711–8721

    Google Scholar 

  • Bird CR, Smith CJS, Ray JA, Moureau P, Bevan MW, Bird AS, Hughes S, Morris PC, Grierson D, Schuch W (1988) The tomato polygalacturonase gene and ripening-specific expression in transgenic plants. Plant Mol Biol 11: 651–662

    Google Scholar 

  • Chen JQ, Black CC (1992) Biochemical and immunological properties of alkaline invertase isolated from sprouting soybean hypocotyls. Arch Biochem Biophys 295: 61–69

    Google Scholar 

  • Daie J (1984) Characterisation of sugar transport in storage tissue of carrot. J Am Soc Hort Sci 109: 718–722

    Google Scholar 

  • Dickinson CD, Altabella T, Chrispeels MJ (1991) Slow-growth phenotype of transgenic tomato expressing apoplastic invertase. Plant Physiol 95: 420–425

    Google Scholar 

  • Elliott KJ, Butler WO, Dickinson CD, Konno Y, Vedvick TS, Fitzmaurice L, Mirkov TE (1993) Isolation and characterisation of fruit vacuolar invertase genes from two tomato species and temporal differences in mRNA levels during fruit ripening. Plant Mol Biol 21: 515–524

    Google Scholar 

  • Eschrich W (1980) Free space invertase, its possible role in phloem unloading. Ber Dtsch Bot Ges 93: 363–378

    Google Scholar 

  • Foyer CH (1987) The basis for source-sink interaction in leaves. Plant Physiol Biochem 25: 649–657

    Google Scholar 

  • Goldschmidt EE, Huber SC (1992) Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose and hexose sugars. Plant Physiol 99: 1443–1448

    Google Scholar 

  • Hammond JBW, Burton KS, Shaw AF, Ho LC (1984) Sourcesink relationships and carbon metabolism in tomato leaves. 2. Carbohydrate pools and catabolic enzymes. Ann Bot 53: 307–314

    Google Scholar 

  • Heineke D, Sonnewald U, Büssis D, Günter G, Leidreiter K, Wilke I, Raschke K, Willmitzer L, Heldt HW (1992) Apoplastic expression of yeast-derived invertase in potato. Effects on photosynthesis, leaf solute composition, water relations and tuber composition. Plant Physiol 100: 301–308

    Google Scholar 

  • Heineke D, Wildenberger K, Sonnewald U, Willmitzer L, Heldt HW (1994) Accumulation of hexoses in leaf vacuoles: studies with transgenic tobacco plants expressing yeast-derived invertase in the cytosol, vacuole or apoplasm. Planta 194: 29–33

    Google Scholar 

  • Hole CC, Dearman J (1994) Sucrose uptake by the phloem parenchyma of carrot storage root. J Exp Bot 45: 7–15

    Google Scholar 

  • Huber SC (1989) Biochemical mechanism for regulation of sucrose accumulation in leaves during photosynthesis. Plant Physiol 91: 656–662

    Google Scholar 

  • Jang J-C, Sheen J (1994) Sugar sensing in higher plants. Plant Cell 6: 1665–1679

    Google Scholar 

  • Kuhlemeier C, Green PJ, Chua N-H (1987) Regulation of gene expression in plants. Annu Rev Plant Physiol 38: 221–257

    Google Scholar 

  • Lichtenthaler AK, Wellburn LR (1983) Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11: 591–592

    Google Scholar 

  • Matsushita K, Uritani I (1974) Changes in invertase activity of sweet potato in response to wounding and purification and properties of its invertases. Plant Physiol 54: 60–66

    Google Scholar 

  • Morris DA, Arthur ED (1985) Effect of gibberellic acid on patterns of carbohydrate distribution and acid invertase activity in Phaseolus vulgaris. Physiol Plant 65: 257–262

    Google Scholar 

  • Myrback K (1960) Invertases. In: Boyer PD, Lardy H, Myrback K (eds) The enzymes (2nd edn). Academic Press, New York, pp 379–396

    Google Scholar 

  • Ohyama A, Ito H, Sato T, Nishimura S, Imai T, Hiria M (1995) Suppression of acid invertase activity by antisense RNA modifies the sugar composition of tomato fruit. Plant Cell Physiol 36: 369–376

    Google Scholar 

  • Ramloch-Lorenz K, Knudsen S, Sturm A (1993) Molecular characterisation of the gene for carrot cell wall β-fructosidase. Plant J 4: 545–554

    Google Scholar 

  • Ranwala AP, Suematsu C, Masuda H (1992) Soluble and wallbound invertases in strawberry fruit. Plant Sci 84: 59–64

    Google Scholar 

  • Ricardo CPP, ap Rees T (1970) Invertase activity during the development of carrot roots. Phytochemistry 9: 239–247

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual (2nd edn). Cold Spring Habor Laboratory Press, New York

    Google Scholar 

  • Scholes JD, Lee PJ, Horton P, Lewis DH (1994) Invertase: understanding changes in the photosynthetic and carbohydrate metabolism of barley leaves infected with powdery mildew. New Phytol 126: 213–222

    Google Scholar 

  • Sheen J (1990) Metabolic repression of transcription in higher plants. Plant Cell 2: 1027–1038

    Article  CAS  PubMed  Google Scholar 

  • Sturm A, Chrispeels MJ (1990) cDNA cloning of carrot extracellular β-fructosidase and its expression in response to wounding and bacterial infection. Plant Cell 2: 1107–1119

    Google Scholar 

  • Sturm A, Sebkova V, Lorenz L, Hardegger M, Lienhard S, Unger C (1995) Development- and organ-specific expression of genes for sucrose synthase and three isoenzymes of acid β-fructofuranosidase in carrot. Planta 195: 601–610

    Google Scholar 

  • Sonnewald U, Brauer M, von Schaewen A, Stitt M, Willmitzer L (1991) Transgenic tobacco plants expressing yeast-derived invertase in either the cytosol, vacuole or apoplast: a powerful tool for studying sucrose metabolism and sink/source interactions. Plant J 1: 95–106

    Google Scholar 

  • Tang X, Ruffner H-P, Scholes JD, Rolfe SA (1996) Purification and characterisation of soluble invertases from leaves of Arabidopsis thaliana. Planta 198: 17–23

    Google Scholar 

  • Tang X, Rolfe SA, Scholes JD (1996) The effect of Albugo Candida (white blister rust) on the photosynthetic and carbohydrate metabolism of leaves of Arabidopsis thaliana. Plant Cell Environ, in press

  • Tetlow IJ, Farrar JF (1992) Sucrose-metabolizing enzymes from leaves of barley infected with brown rust (Puccinia hordei Otth). New Phytol 120: 475–480

    Google Scholar 

  • Unger C, Hardegger M, Lienhard S, Sturm A (1994) cDNA cloning of carrot (Daucus carota) soluble acid β-fructofuranosidases and comparison of the cell wall isoenzyme. Plant Physiol 104: 1351–1357

    Google Scholar 

  • Weber H, Borisjuk L, Heim U, Buchner P, Wobus U (1995) Seed coat-associated invertases of fava bean control both unloading and storage functions: cloning of cDNAs and cell-type-specific expression. Plant Cell 7: 1835–1846

    Google Scholar 

  • Wright DP, Baldwin BC, Shephard MC, Scholes JD (1995) Source-sink relationships in wheat leaves infected with powdery mildew. I. Alterations in carbohydrate metabolism. Physiol Mol Plant Pathol 47: 237–253

    Google Scholar 

  • Wu LL, Song I, Karuppiah N, Kaufman PB (1993) Kinetic induction of oat shoot pulvinus invertase mRNA by gravistimulation and partial cDNA cloning by the polymerase chain reaction. Plant Mol Biol 21: 1175–1179

    Google Scholar 

  • von Schaewen A, Stitt M, Schmidt R, Sonnewald U, Willmitzer L (1990) Expression of a yeast-derived invertase in the cell wall of tobacco and Arabidopsis plants leads to accumulation of carbohydrate and inhibition of photosynthesis and strongly influences growth and phenotype of transgenic tobacco plants. EMBO J 9: 3033–3044

    Google Scholar 

  • Zrenner R, Schüler K, Sonnewald U (1995) Soluble acid invertase determines the hexose-to-sucrose ratio in cold-stored potato tubers. Planta 198: 246–252

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Scholes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholes, J., Bundock, N., Wilde, R. et al. The impact of reduced vacuolar invertase activity on the photosynthetic and carbohydrate metabolism of tomato. Planta 200, 265–272 (1996). https://doi.org/10.1007/BF00208317

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00208317

Key words

Navigation