Skip to main content
Log in

Raman spectroscopy at high pressure and high temperature. Phase transitions and thermodynamic properties of minerals

  • Original Paper/Topic 5
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

An outline of recent developments in Raman spectroscopy at high pressure, high temperature and combined high pressure and high temperature is presented. The instrumental and technical aspects of Raman spectroscopy, and coupling of diamond anvil cells and miniature furnaces to Raman microspectrometers are discussed. Some potential pitfalls, such as the thermal pressure in laser heated diamond anvil cells or the thermal radiation during high-temperature measurements, are presented. Special emphasis is given on processing of high-temperature Raman data. New recently discovered phase transformations in the SiO2 system (quartz→ quartz II, pressure-induced amorphization of quartz) and structural changes in SiO2 glass and melt are used to infer the capability of in-situ Raman spectroscopy for determining the microscopic behaviour of minerals, melts and glasses under extreme pressure and temperature conditions. Finally, it is shown how vibrational mode anharmonicity can be obtained from the pressure- and temperature-induced shifts of Raman modes. This anharmonicity can be introduced into the vibrational modeling of the thermodynamic properties (entropy and equation of state) of minerals. The example of calcite is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams DM, Christy AG (1992) High-temperature diamond anvil pressure cells: a review. HighTemp High Press 24:1–11

    Google Scholar 

  • Akaogi M, Ross NL, McMillan PF, Navrotsky A (1984) The Mg2SiO4 polymorphs (olivine, modified spinel, spinel)-thermodynamic properties from oxide melt solution calorimetry, phase relations and models of lattice vibrations. Am Mineral 69:499–512

    Google Scholar 

  • Arashi H (1987) Raman spectroscopic studies at high temperatures and high pressures: application to determination of P-T diagram of ZrO2. In: Y Syono and MH Manghnani (eds) Highpressure research in minerals physics. Terrapub, Tokyo, pp 335–339

    Google Scholar 

  • Bell RJ, Dean P (1972) The structure of vitreous silica: validity of the random network model. Phil Mag 25: 1381–1398

    Google Scholar 

  • Boehler R, Chopelas A (1992) Phase transitions in a 500 kbar-3000 K gas apparatus. In: Y Syono and MH Manghnani (eds) High pressure research in minerals physics: applications to Earth and Planetary Sciences. Terrapub AGU, Washington-Tokyo, pp 55–62

    Google Scholar 

  • Casetx J, Madon M (1995) Test of the vibrational modelling for the lambda-type transitions: Application to the alpha-beta quartz transition. Phys Chem Miner 22:1–10

    Google Scholar 

  • Chopelas A (1990) Thermochemical properties of forsterite at mantle pressures derived from vibrational spectroscopy. Phys Chem Miner 17:149–156

    Google Scholar 

  • Chopelas A (1991) Thermal properties of β-Mg2SiO4 at mantle pressure derived from vibrational spectroscopy: implications for the mantle at 400 km depth. J Geophys Res 96:11817–11829

    Google Scholar 

  • Chopelas A, Boehler R, Ko T (1994) Thermodynamics and behaviour of γ-Mg2SiO4 at high pressure: implications for Mg2SiO4 phase equilibrium. Phys Chem Minerals 21:351–359

    Google Scholar 

  • Cooney T, Sharma SK, Schiferl D (1992) Raman study of forsterite under simultaneous high pressure and high temperature. Abstract book of 29th International Geological Congress, Kyoto Japan 3:688

    Google Scholar 

  • Daniel I, Gillet P, McMillan PF, Riehet P (1995a) An in-situ hightemperature structural study of stable and metastable CaAl2Si2O8 polymorphs. Miner Mag 59:25–33

    Google Scholar 

  • Daniel I, Gillet P, McMillan PF, Poe BT (1995b) In-situ high-temperature Raman spectroscopic studies of aluminosilicates liquids. Phys Chem Minerals 22:74–86

    Google Scholar 

  • Daniel I, Gillet P, Ghose S (1995c) A new high-pressure phase transition in anorthite (CaAl2Si2O8) revealed by Raman spectroscopy. Am Mineral 80:645–648

    Google Scholar 

  • Daniel I, Gillet P, McMillan PF, Wolf GH (1996a) High-pressure behaviour of anorthite. J Geophys Res submitted

  • Daniel I, McMillan PF, Gillet P, Poe BT (1996b) Raman spectroscopic study of structural changes in calcium aluminate (CaAl2O4) glass at high pressure and high temperature. Chem Geol in press

  • Dhamelincourt P, Barbillat J, Delhaye M (1993) Laser confocal Raman microspectrometry. Spect Eur 5:16–26

    Google Scholar 

  • Durben DJ, Wolf GH (1992) High-temperature behavior of metastable MgSiO3 perovskite: a Raman spectroscopic study. Am Mineral 77: 890–893

    Google Scholar 

  • Exharos GJ, Frydrych WS, Walrafen GE, Fisher M, Pugh E, Garofalini SH (1988) Vibrational spectra of silica near 2400 K: measurement and molecular dynamics simulation. In: R.J.H. Clark and D.A. Long (eds) Proc. 11th Int Conf Raman Spectroscopy. Wiley, pp 503–504

  • Farber DL, Williams Q (1992) Pressure-induced coordination changes in alkali-germanate melts: an in-situ spectroscopic investigation. Science 256:1427–1430

    Google Scholar 

  • Faust J, Knittle E (1994) The equation of state, amorphization, and high-pressure phase diagram of muscovite. J Geophys Res 99:19785–19792

    Google Scholar 

  • Fei Y, Mao HK, Shu J, Parthasarathy G, Bassett WA, Ko J (1992) Simultaneous high-P, high-T X Ray diffraction study of β- Mg2SiO4 to 26 GPa and 900 K. J Geophys Res 97:4489–4495

    Google Scholar 

  • Fiquet G, Gillet P, Richet P (1992) Anharmonic contributions to the heat capacity of minerals at high-temperatures. Application to Mg2GeO4, Ca2GeO4, MgCaGeO4. Phys Chem Minerals 18:469–479

    Google Scholar 

  • Fiquet G, Guyot F, Itie JP (1994) High-pressure X-ray Diffraction Study of Carbonates — MgCo3, CaMg(CO3)2 and CaCO3. Amer Mineral 79:15–23

    Google Scholar 

  • Fiquet G, Andrault D, Itié JP, Gillet P, Richet P (1996) X-ray diffraction of periclase in a laser-heated diamond anvil cell. Phys Earth Planet Int in press

  • Fujishiro I, Piermarini GJ, Block S, Munro RG (1981) Viscosities and glass transition pressures in the methanol-ethanol-water system. 8th AIRAPT Conference abstracts: 608–611

  • Geissberger AE, Galeener FL (1983) Raman studies of vitreous SiO2 versus fictive temperature. Phys Rev B 28:2366–3271

    Google Scholar 

  • Gillet P (1993) Stability of magnesite (MgCO3) at mantle pressure and temperature conditions. A Raman spectroscopic study. Am Mineral 78:1328–1331

    Google Scholar 

  • Gillet P, Goffé B (1988) On the significance of aragonite occurrences in the Western Alps. Contrib Mineral Petrol 99:70–81

    Google Scholar 

  • Gillet P, Malezieux JM, Dhamelincourt MC (1988) Microraman multichannel spectroscopy up to 2.5 GPa using a sapphireanvil cell: experimental set-up and some applications. Bull Minéral 111:1–15

    Google Scholar 

  • Gillet P, Guyot F, Malezieux JM (1989) High-pressure and hightemperature Raman spectroscopy of Ca2GeO4: some insights on anharmonicity. Phys Earth Planet Int 58:141–154

    Google Scholar 

  • Gillet P, Le Cléach A, Madon M (1990) High-temperature Raman spectroscopy of the SiO2 and GeO2 polymorphs: anharmonicity and thermodynamic properties at high-temperature. J Geophys Res 95:21635–21655

    Google Scholar 

  • Gillet P, Richet P, Guyot F, Fiquet G (1991) High-temperature thermodynamic properties of forsterite. J Geophys Res 96:11805–11816

    Google Scholar 

  • Gillet P, Fiquet G, Malézieux JM, Geiger C (1992) High-pressure and high-temperature Raman spectroscopy of end-member garnets: pyrope, grossular and andradite. Eur J Mineral 4:651–664

    Google Scholar 

  • Gillet P, Guyot F, Price GD, Tournerie B, Le Cléac'h A (1993a) Phase changes and thermodynamic properties of CaTiO3. Spectroscopic data, vibrational modelling and some insights on the properties of MgSiO3 perovskite. Phys Chem Minerals 20:159–170

    Google Scholar 

  • Gillet P, Fiquet G, Daniel I, Reynard B (1993b) Raman spectroscopy at mantle pressure and temperature conditions. Experimental set-up and the example of CaTiO3 perovskite. Geophys Res Lett 20:1931–1934

    Google Scholar 

  • Gillet P, Biellmann C, Reynard B, McMillan PF (1993 c) Raman spectroscopic studies of carbonates. Part I: High-pressure and high-temperature behaviour of calcite, magnesite, dolomite, aragonite. Phys Chem Minerals 20:1–18

    Google Scholar 

  • Gillet P, Badro J, Varel B, McMillan P (1995) High-pressure behaviour of AlPO4. Amorphization and the memory glass effect revisited. Phys Rev B 51:11262–11269

    Google Scholar 

  • Gillet P, Malézieux JM; Itié P (1996a) Phase changes and amorphization of zeolites at high pressures, the case of natrolite and scolecite. Am Mineral in press

  • Gillet P, McMillan PF, Schott J, Badro J, Grzechnik A (1996b) Thermodynamic properties and isotopic fractionation of calcite from vibrational spectroscopy of 18O-substituted calcite. Geochim Cosmochim in press

  • Grimsditch M, Popova S, Brazkhin VV, Voloshin RN (1994) Temperature-induced amorphization of SiO2 stishovite. Phys Rev B 50:12984–12986

    Google Scholar 

  • Guyot F, Wang Y, Gillet P, Ricard Y (1996) Experimental measurements of high-pressure high-temperature volumes in olivines by synchrotron X-Ray diffraction. Comparison with quasi-harmonic computations. Phys Earth Planet Int in press

  • Heinz DL, Jeanloz R (1987) Temperature measurements in laserheated diamond cell. In: MH Manghnani and Y Syono (eds) High-pressure research in Mineral Physics. Terrapub, Tokyo, pp 113–116

    Google Scholar 

  • Heinz DL (1990) Thermal pressure in the laster-heated diamond anvil cell. Geophys Res Letter 17:1161–1164

    Google Scholar 

  • Hemley RJ, Mao HK, Bell PM, Mysen BO (1986) Raman spectroscopy of SiO2 glass at high pressure. Phys Rev Lett 57:747–750

    Google Scholar 

  • Hemley RJ (1987) Pressure dependence of Raman spectra of SiO2 polymorphs: α quartz, coesite and stishovite. In: MH Manghnani and Y Syono (eds) High-pressure research in mineral physics. Terra Scientific, Tokyo, pp 347–360

    Google Scholar 

  • Hemley RJ, Bell PM, Mao HK (1987) Laser techniques in highpressure geophysics. Science 237:605–611

    Google Scholar 

  • Hemley RJ, Jephcoat AP, Mao HK, Ming LC, Manghnani MH (1988) Pressure-induced amorphisation of crystalline silica. Nature 334:52–54

    Google Scholar 

  • Hemley RJ, Prewitt CT, Kingma KJ (1994) High-pressure behaviour of silica. In: PJ Heaney, CT Prewitt and GV Gibbs (eds) MSA Reviews in Mineralogy: Silica: Physical behavior, geochemistry and material applications. Washington D.C., pp 41–81

  • Hofmeister AM (1987) Single-crystal absorption and reflection infrared of forsterite and fayalite. Phys Chem Miner 14:499–513

    Google Scholar 

  • Hofmeister AM, Xu J, Mao HK, Bell PM, Hoering TC (1990) Thermodynamics of Fe-Mg, olivines at mantle pressure: mid- and far-infrared spectroscopy at high pressure. Amer Min 74:281–306

    Google Scholar 

  • Jacobs GK, Kerrick DM, Krupka KM (1981) The high-temperature heat capacity of natural calcite (CaCO3). Phys Chem Minerals 7:55–59

    Google Scholar 

  • Jayaraman AJ (1983) Diamond anvil cell and high-pressure physical investigations. Rev Mod Phys 55: 65–85

    Google Scholar 

  • Jayaraman AJ, Wood DL, Maines RG (1987) High-pressure Raman study of the vibrational modes in AlPO4 and SiO2 (α-quartz). Phys Rev B 35: 8316–8321

    Google Scholar 

  • Kieffer SW (1979a) Thermodynamics and lattice vibrations of minerals. 1. Minerals heat capacities and their relationship to simple lattice vibrational modes. Rev Geophys Space Phys 17:1–19

    Google Scholar 

  • Kieffer SW (1979b) Thermodynamics and lattice vibrations of minerals. 2. Vibrational characteristics of silicates. Rev Geophys Space Phys 17:20–34

    Google Scholar 

  • Kieffer SW (1979c) Thermodynamics and lattice vibrations of minerals. 3. Lattice dynamics and an approximation for minerals with application to simple substances and framework silicates. Rev Geophys Space Phys 35–59

  • Kieffer SW (1980) Thermodynamics and lattice vibrations of minerals. 4. Application to chain and sheet silicates and orthosilicates. Rev Geophys Space Phys 18:862–886

    Google Scholar 

  • Kieffer SW (1982) Thermodynamics and lattice vibrations of minerals. 5. Application to phase equilibria, isotopic fractionation and high-pressure thermodynamic properties. Rev Geophys Space Phys 20: 827–849

    Google Scholar 

  • Kingma KJ, Hemley RJ, Mao HK, Veblen DR (1993a) New highpressure transformation in α-quartz. Phys Rev Lett 25: 3927–3930

    Google Scholar 

  • Kingma KJ, Meade C, Hemley RJ, Mao HK, Veblen DR (1993b) Microstructural observations of α-quartz amorphisation. Science 259:666–669

    Google Scholar 

  • Kingma KJ, Hemley RJ, Veblen DR, Mao HK (1994) High-pressure transformations and amorphization in quartz. In: S.C. Schmidt et al. (eds) High-pressure Science and Technology. American Institute of Physics, New York, pp 39–42

    Google Scholar 

  • Kingma KJ, Cohen RE, Hemley RJ, Mao HK (1995) Transformation of stishovite to a denser phase at lower-mantle pressures. Nature 374:243–245

    Google Scholar 

  • Kraft S, Knittle E, Williams Q (1991) Carbonate stability in the Earth's mantle: a vibrational spectroscopic study of aragonite and dolomite at high pressures and temperatures. J Geophys Res 96:17997–18010

    Google Scholar 

  • Le Cléac'h A, Gillet P (1990) IR and Raman spectroscopy study of natural lawsonite. Eur J Mineral 2:43–53

    Google Scholar 

  • Lemos V, Camatgo F (1990) Effects of pressure on the Raman spectra of a 4∶1 methanol-ethanol mixture. J Raman Spectroscopy 21:123–126

    Google Scholar 

  • Long DA (1977) Raman spectroscopy. McGraw Hill, New York

    Google Scholar 

  • Mamonne JF, Shama SK (1979) Pressure and temperature dependence of the Raman spectra of rutile-structure oxides. Carnegie Institution Year Book, Washington, pp 369–373

    Google Scholar 

  • Mao HK, Hemley RJ (1994) Ultrahigh-pressure transitions in solid hydrogen. Rev Mod Phys 66:671–692

    Google Scholar 

  • Mao HK, Hemley RJ, Fei Y, Shu JF, Chen LC, Jephcoat AP, Wu Y, Bassett WA (1991) Effect of pressure, temperature and composition on lattice parameters and density of (Mg,Fe)SiO3 perovskite to 30 GPa. J Geophys Res 96: 8069–8079

    Google Scholar 

  • Markgraf SA, Reeder RJ (1985) High-temperature structure refinements of calcite and magnesite. Am Mineral 70:590–600

    Google Scholar 

  • McMillan PF (1989) Raman spectroscopy in mineralogy and geochemistry. Ann Rev Earth Planet Sci 17:255–283

    Google Scholar 

  • McMillan PF, Gillet P, Hemley RJ (1996) Vibrational spectroscopy of mantle minerals. In: Mineral spectroscopy: A tribute to Roger Burns. Geochemical Society Special Publication in press

  • McMillan PF, Hofmeister AM (1988) Infrared and Raman spectroscopy. In: F.C. Hawthorne (eds) Spectroscopic Methods in Mineralogy and Geology. Reviews in Mineralogy. Mineral Soc of America, pp 99–159

  • McMillan PF, Poe BT, Gillet P, Reynard B (1994) A study of SiO2 glass and supercooled liquid to 1950 K via high-temperature Raman spectroscopy. Geochim Cosmochim Acta 58:3653–3664

    Google Scholar 

  • McMillan PF, Wolf GH (1995) Vibrational spectroscopy of silicate liquids. In: JF Stebbins, DB Dingwell and PF McMillan (eds) Structure and dynamics of silicate melts. Mineralogical Society of America, Washington D.C., pp in press

    Google Scholar 

  • Meade C, Jeanloz R (1988) Yield strength of MgO to 40 GPa. J Geophys Res 93:3261–3269

    Google Scholar 

  • Meade C, Jeanloz R, Hemley RJ (1992) Spectroscopic and X-Ray diffraction studies of metastable crystalline-amorphous transitions in Ca(OH)2 and serpentine. In: Y Syono and MH Manghnani (eds) High pressure research in minerals physics: applications to Earth and Planetary Sciences. Terrapub AGU, Washington-Tokyo, pp 485–492

    Google Scholar 

  • Meng Y, Weidner DJ, Fei Y (1993) Deviatoric stress in a quasi-hydrostatic diamond anvil cell: effect on the volume-based pressure calibration. Geophys Res Lett 20:1147–1150

    Google Scholar 

  • Mishima O, Calvert LD, Whalley E (1984) “Melting ice I” at 77 K and 10 kbar: a new method for making amorphous solids. Nature 310: 393–394

    Google Scholar 

  • Mysen B (1995) Structural behavior of Al3+ in silicate melts: In situ, high-temperature measurements as a function of bulk chemical composition. Geochim Cosmochim Acta 59:455–474

    Google Scholar 

  • Mysen BO, Frantz JD (1992) Raman spectroscopy of silicate melts at magmatic temperatures: Na2O-SiO2, K2O-SiO2 and Li2O-SiO2 binary compositions in the temperature range 25–1475 °C. Chem Geol 96: 321–332

    Google Scholar 

  • Palmer DC, Hemley RJ, Prewitt CT (1994) Raman Spectroscopic Study of High-Pressure Phase Transitions in Cristobalite. Phys Chem Miner 21:481–488

    Google Scholar 

  • Piermarini GJ, Block S, Barnett JD (1973) Hydrostatic limits in liquids and solids to 100 kbar. J Appl Phys 44:5377–5382

    Google Scholar 

  • Piriou A, Alain P (1979) Density of states and structural from related structural properties of amorphous solids. High Temp High Press 11:407–414

    Google Scholar 

  • Plihal M (1973) Lattice dynamics of crystals of the calcite structure. II-Dispersion curve and phonon densities. Phys Stat Sol b 56:495–506

    Google Scholar 

  • Poirier JP, Peyronneau J (1992) Experimental determination of the electrical conductivity of the material of the Earth's lower mantle. In: Y Syono and MH Manghnani (eds) High pressure research in minerals physics: applications to Earth and Planetary Sciences. Terrapub AGU, Washington-Tokyo, pp 77–88

    Google Scholar 

  • Reynard B, Guyot F (1994) High-temperature properties of geikielite (MgTiO3) ilmenite from high-temperature high-pressure Raman spectroscopy. Some implications for MgSiO3-ilmenite. Phys Chem Minerals 21:441–450

    Google Scholar 

  • Reynard B, Rubie D (1996) High pressure and high temperature Raman spectroscopic study of MgSiO3-ilmenite. Am Mineral in press

  • Reynard B, Takir F, Guyot F, Gwanmesia GD, Liebermann RC, Gillet P (1996) High temperature Raman spectroscopic and X-ray diffraction study of β-Mg2SiO4: some insights on its high temperature thermodynamic properties and on the β-α phase transformation mechanism and kinetics. Amer Mineral in press

  • Richet P (1988) Superheating, melting and vitrification of highpressure minerals. Nature 331:56–58

    Google Scholar 

  • Richet P, Gillet P, Ali Bouhfid M, Daniel I, Fiquet G (1993) A versatile heating stage for measurements up to 2700 K, with applications to phase relationships determinations, Raman spectroscopy and X-ray diffraction. J Appl Phys 73:5446–5451

    Google Scholar 

  • Salje E, Viswanathan K (1976) The phase diagram calcite-aragonite as derived from crystallographic properties. Contrib Mineral Petrol 55:55–67

    Google Scholar 

  • Seifert FA, Mysen BO, Virgo D (1981) Structural similarities of glasses and melts relevant to petrological processes. Geochim Cosmochim Acta 45:1879–1884

    Google Scholar 

  • Serghiou GC, Hammack WS (1993) Pressure-induced amorphization of wollastonite (CaSiO3) at room temperature. J Phys Chem 98:9830–9834

    Google Scholar 

  • Sharma SK, Mammone JF, Nicol MF (1981) Raman investigations of ring configurations in vitreous silica. Nature 292:140–141

    Google Scholar 

  • Sharma SK (1989) Applications of advanced Raman techniques in Earth Sciences. In: K Gopalan, VK Gaur and JD MacDougall (eds) Raman spectroscopy: sixty years on vibrational spectra and structure. Elsevier, Amsterdam, pp 513–568

    Google Scholar 

  • Skinner BJ, Fahey JJ (1963) Observations on the inversion of stishovite to silica glass. J Geophys Res 68:5595–5604

    Google Scholar 

  • Sotin C, Gillet P, Poirier JP (1985) Creep of high-pressure ice VI. In: J Klinger (eds) Ices in the solar system. Reidel Publ Comp, pp 109–118

  • Vo-Than D, Polian A, Richet P (1996) Elastic properties of silicate melts up to 2350 K from Brillouin scattering. Geophys Res Lett submitted

  • Williams Q, Hemley RJ, Kruger MB, Jeanloz R (1993) High-pressure infrared spectra of α-quartz, coesite, stishovite ans silica glass. J Geophys Res 98:22157–22170

    Google Scholar 

  • Wolf GH, Durben DJ, MacMillan PF (1990) High pressure Raman spectroscopic study of sodium tetrasilicate (Na2Si4O9). J Chem Phys 93:2280–2288

    Google Scholar 

  • Wolf GH, Wang SA, Herbst CA, Durben DJ, Oliver WF, Kang ZC, Halvorson K (1992) Pressure-induced collapse of the tetrahedral framework of crystalline and amorphous GeO2. In: Y Syono and MH Manghnani (eds) High pressure research in minerals physics: applications to Earth and Planetary Sciences. Terrapub AGU, Washington-Tokyo, pp 503–517

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillet, P. Raman spectroscopy at high pressure and high temperature. Phase transitions and thermodynamic properties of minerals. Phys Chem Minerals 23, 263–275 (1996). https://doi.org/10.1007/BF00207767

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00207767

Keywords

Navigation