Skip to main content
Log in

Evidence for sulfurization and the origin of some sudbury-type ores

  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The suggestion that Sudbury-type ores may be formed by the introduction of country rock sulfur into still hot intrusions (i.e., sulfurization) suffers from a reputed lack of field evidence. Permissive evidence for sulfurization includes the epigenetic nature of many Sudbury-type ores and that many Sudbury-type ores crystallized from sulfide melts. Visual evidence exists for sulfurization of a gabbro in Zambia. The lead isotopic composition of ore minerals at Sudbury implies that at least some of the metals were derived from the erruptive. Published sulfur isotopic data from several Sudbury-type ores differ from and do not exhibit a common pattern of isotopic enrichment with respect to sulfides within associated intrusions. Evidently the sulfur was derived from the country rocks. Sudbury-type ores exhibiting magmatic textures commonly occur within more siliceous dikes than the host intrusions. Inorganic reduction of sulfate occurs only above 600° C. Reduction of sulfate with resultant sulfurization of ferrous iron and traces of other metals originally present in the still hot parental intrusive rock would make the rock more siliceous. Above 1100° C the silicate-residue and newly formed sulfides would form immiscible magmas. Therefore, ore magmas within and near mafic intrusives can be epigenetic. The processes by which sulfur is introduced into intrusions are still speculative.

Zusammenfassung

Für die Annahme, daß Erze vom Sudbury-Typus sich durch Zuführung von Nebengesteinsschwefel in noch heiße Intrusionen bilden können (“sulfurization”), fehlt es angeblich an Feldunterlagen. Folgende Tatsachen lassen sich mit einer Schwefelung (“sulfurization”) vereinigen: der epigenetische Charakter vieler Erze vom Sudbury-Typ; auch sind viele Erze von Sudbury-Typus aus sulfidischen Schmelzen kristallisiert. In einem Gabbro in Zambia ist der Beweis für Schwefelung (“sulfurization”) direkt sichtbar. Die Isotopen-Zusammensetzung von Blei in Erzmineralien in Sudbury zeigt, daß mindestens einige der Metalle aus dem Eruptivgestein stammen. Schwefelisotop-Daten, die für mehrere Lagerstätten von Sudbury-Typen veröffentlicht worden sind, haben hinsichtlich der Isotop-Anreicherung keine gemeinsamen Züge. Offensichtlich stammt der Schwefel aus dem Nebengestein. Erze vom Sudbury-Typ mit magmatischem Gefüge finden sich oft in Gängen, die saurer sind als das Wirtsgestein. Anorganische Reduktion von Sulfat findet nur oberhalb 600°C statt. Reduktion von Sulfat und die entstehende Schwefelung (“sulfurization”) von zweiwertigem Eisen und Spuren anderer Metalle, die ursprünglich in dem noch heiß eruptiven Gestein anwesend sind, machen das Gestein noch saurer. Oberhalb 1100°C würden der Silicat-Rest und die neugeformten Sulfide nicht mischbare Magmen bilden. Deshalb können sich sulfidische Schmelzen innerhalb und in der Nähe von “Mafic”-Intrusionen später gebildet haben. Die Prozesse, durch die Schwefel in Intrusionen eingeführt wird, sind noch unbekannt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aho, A.E.: Geology and genesis of ultrabasic nickel-copper pyrrhotite deposits at the Pacific Nickel property, southwestern British Columbia. Econ. Geol. 51, 441–481 (1956).

    Article  Google Scholar 

  • Ault, W.V., and J.L. Kulp: Isotopic geochemistry of sulphur. Geochim. Cosmochim. Acta 16, 201–235 (1959).

    Article  Google Scholar 

  • Bateman, A.M.: Magmatic ore deposits, Sudbury, Ont. Econ. Geol. 12, 391–426 (1917).

    Article  Google Scholar 

  • Berry, L.G., and B. Mason: Mineralogy, 630 p. San Francisco: W. H. Freeman & Co. 1959.

    Google Scholar 

  • Burrows, A. G., and H. C. Rickaby: Sudbury nickel field restudied. 43rd Ann. Rept. Ontario Dept. Mines 43, part II, 43 p. (1934).

  • Campbell, F.A.: Nickel deposits in the Quill Creek and White River areas, Yukon. Can. Mining Met. Bull. 53, 953–959 (1960).

    Google Scholar 

  • Cameron, E.N.: Origin of sulfides in the nickel deposits of Mount Prospect, Connecticut. Geol. Soc. Am. Bull. 54, 651–686 (1943).

    Article  Google Scholar 

  • Carithers, W., and A. K. Guard Geology and ore deposits of the Sultan Basin, Snohomish County, Washington. Wash. Div. Mines Geol. Bull. 36, 90 p. (1945).

  • Clark, L.A.: Geology and geothermometry of the Marbridge nickel deposit, Malartic, Quebec. Econ. Geol. 60, 792–811 (1965).

    Article  Google Scholar 

  • Clauson, V. C.: Geology of the Sudbury Basin area, Ontario, Canada. Unpublished. University of Washington Ph. D. dissertation, 135 p. (1947).

  • Coleman, A. P.: The Sudbury Nickel field. Ontario Bur. Mines Rept. 14, pt. 3, 188 p. (1905).

  • — Magmas and sulfide ores. Econ. Geol. 12, 427–434 (1917).

    Article  Google Scholar 

  • --, E. S. Moore, and T. L. Walker: The Sudbury nickel intrusive. Contributions to Canadian Mineralogy, 1929; Univ. Toronto Studies, Geol. Ser., 28, 54 p. (1929).

  • Collins, W.H.: The life history of the Sudbury nickel irruptive, Part 4. Roy. Soc. Canada Trans. 3rd ser., sec. IV, 31, 15–43 (1937).

    Google Scholar 

  • Cooke, H. C.: Problems of Sudbury geology, Ontario. Canada Geol. Survey Bull. 3, 77 p. (1946).

  • Craig, J. R.: Appearance of phases during cooling of pyrrhotite-rich Ni-Cu ores. 1965–1966 Ann. Rept. Dir. Geophys. Lab., Carnegie Inst., Washington, p. 335–336, (1967).

  • Davies, J.F.: Copper-nickel deposits of the Bird River area. Western Miner and Oil Rev. 28, No. 8, 42–44 (1955).

    Google Scholar 

  • Desborough, G.A.: The significance of accessory magmatic sphalerite in basic rocks to the origin of nickeliferous pyrrhotite ores. Econ. Geol. 61, 370–375 (1966).

    Article  Google Scholar 

  • Fitzhugh, Jr., E.F., and D.C. Seidel: Formation of nickel and iron sulfides from silicates at moderate temperatures (abs.). Geol. Soc. Am. 1966 Ann. Meetings, Program, 68 (1966).

  • Garlick, W.G.: Hydrothermal versus syngenetic theories of ore deposition. Econ. Geol. 58, 447–456 (1963).

    Article  Google Scholar 

  • Godlevskii, M.N.: Problems of genesis of the copper-nickel deposits of the Siberian platform: Geol. of Ore Deposits (Geologiya. Rudnykh Mestorozhdenii); Acad. Sci. U.S.S.R. 1, No. 2, 16–30 (1959). Abstracted and translated by E. A. Alexandrov. Econ. Geol. 56, 448–449 (1961).

    Google Scholar 

  • —, and L.N. Grinenko: Some data on the isotopic composition of sulfur in the sulfides of the Noril'sk deposit. Geochemistry (USSR) (English Transl.) 1, 35–41 (1963).

    Google Scholar 

  • Haapala, P.S.: Fennoscandian nickel deposits (abs.). Econ. Geol. 61, 802–803 (1966).

    Google Scholar 

  • Hawley, J.E.: Upside-down zoning at Frood, Sudbury, Ontario. Econ. Geol. 60, 529–575 (1965).

    Article  Google Scholar 

  • Horwood, H.C.: Magmatic segregation and mineralization at the B. C. Nickel mine, Choate, B. C. Roy. Soc. Canada Trans. 3rd. ser., sec. IV, 31, 5–14 (1937).

    Google Scholar 

  • Howe, E.: Petrographical notes on the Sudbury nickel deposit. Econ. Geol. 9, 505–522 (1914).

    Article  Google Scholar 

  • Jensen, M.L.: Sulfur isotopes and mineral paragenesis. Econ. Geol. 52, 269–281 (1957).

    Article  Google Scholar 

  • — Sulfur isotopes and hydrothermal mineral deposits. Econ. Geol. 54, 374–394 (1959).

    Article  Google Scholar 

  • Karpov, R.V.: Pegmatites of basic rocks in Monchetundra and the associated sulfide mineralization: Geol. of Ore Deposits (Geologiya Rudnykh Mestorozhdenii). Acad. Sci. U.S.S.R. 1, No. 5, 74–90 (1959); abstracted and translated by E. A. Alexandrov. Econ. Geol. 56, 1004 (1961).

    Google Scholar 

  • Kennedy, G.C.: Some aspects of the role of water in rock melts. Geol. Soc. Am. Spec. Papers 62, 489–504 (1955).

  • Kullerud, G., and H. S. Yoder: Sulfide-silicate relations. 1962–1963 Ann. Rept. Dir. Geophys. Lab. Carnegie Inst. Washington, 215–218 (1963).

  • -- Sulfide-silicate reactions. 1963–1964 Ann. Rept. Dir. Geophys. Lab., Carnegie Inst., Washington, 218–222 (1964).

  • Lovering, T.S.: Epigenetic, diplogenetic, syngenetic, and lithogene deposits. Econ. Geol. 58, 315–331 (1963).

    Article  Google Scholar 

  • MacNamara, J., W. Fleming, A. Szabo, and H.G. Thode: The isotopic constitution of igneous sulphur and the primordial abundance of the terrestial sulphur isotopes. Can. J. Chem. 30, 73–76 (1952).

    Article  Google Scholar 

  • Mills, J.W.: Geologic setting of the nickel occurrences of Jumbo Mountain, Washington. Min. Engineering 12, 272–274 (1960).

    Google Scholar 

  • Naldrett, A.J.: The role of sulphurization in the genesis of iron-nickel sulphide deposits of the Porcupine district, Ontario. Can. Mining Met. Bull. 59, 489–497 (1966).

    Google Scholar 

  • --, and G. Kullerud: Investigations of the nickelcopper ores and adjacent rocks of the Sudbury district, Ontario. 1964–1965 Ann. Rept. Dir. Geophys. Lab., Carnegie Inst., Washington, 177–188 (1965).

  • -- Investigations of the nickel-copper ores and adjacent rocks of the Strathcona mine, Sudbury district, Ontario. 1965–1966 Ann. Rept. Dir. Geophys. Lab., Carnegie Inst., Washington, 302–320 (1967).

  • Pelzer, E.E.: The Rankin-Inlet nickel-copper deposit. Can. Mining J. 71, No. 9, 79–83 (1950).

    Google Scholar 

  • Ruttan, G.D.: Geology of Lynn Lake. Can. Mining Met. Bull. 48, 339–348 (1955).

    Google Scholar 

  • Sales, R.H., and C. Meyer: Wall rock alteration at Butte, Montana. Am. Inst. Mining Met. Engs. Trans. 178, 9–35 (1949).

    Google Scholar 

  • Scholtz, D.I.: The magmatic nickeliferous ore deposits of East Griqualand and Pondoland, Pretoria: Univ. Pretoria Pub., Series II. Nat. Sci. 1, 81–210 (1936). Abstracted in Annotated Bibliog. Econ. Geol. 9, No. 2, 287 (1936).

    Google Scholar 

  • Shields, W.R., S.S. Goldich, E.L. Garner, and T.J. Murphy: Natural variations in the abundance ratio and the atomic weight of copper. Jour. Geophys. Res. 70, 479–491 (1965).

    Article  Google Scholar 

  • Shima, M., W. Gross, and H.G. Thode: Sulfur isotope abundances in basic sills, differentiated granites, and meteorites. J. Geophys. Res. 68, 2835–2847 (1963).

    Article  Google Scholar 

  • Skinner, B.J., and D.L. Peck: The solubility of sulfur in basic magmas (abs.). Econ. Geol. 61, 802 (1966).

    Google Scholar 

  • Smith, L. L.: Magnetite deposits of French Creek, Pennsylvania: Penna. Geol. Surv. Bull. M 14, 4th ser., 52 p. (1931).

  • Smitheringale, W.G., and M.L. Jensen: Sulfur isotopic composition of the Triassic igneous rocks of the eastern United States. Geochim. Cosmochim. Acta 27, 1183–1207 (1963).

    Article  Google Scholar 

  • Souch, B.E.: The sulfide ores of Sudbury: their particular relation to a distinctive inclusion-bearing facies of the “nickel irruptive” (abs.). Econ. Geol. 61, 801 (1966).

    Google Scholar 

  • Spencer, A. C.: Magnetite deposits of the Cornwall type: U.S. Geol. Surv. Bull. 359, 102 p. (1908).

  • Stanton, R.L., and R.D. Russell: Anomalous leads and the emplacement of lead sulfide ores. Econ. Geol. 54, 588–607 (1959).

    Article  Google Scholar 

  • Thode, H.G., H.B. Dunford, and M. Shima: Sulfur isotope abundances in rocks of the Sudbury district and their geological significance. Econ. Geol. 57, 565–578 (1962).

    Article  Google Scholar 

  • Turekian, K.K., and K.H. Wedepohl: Distribution of the elements in some major units of the Earth's crust. Geol. Soc. Am. Bull. 72, 175–192 (1961).

    Article  Google Scholar 

  • Turner, F.J., and J. Verhoogen: Igneous and metamorphic petrology (2nd ed.) 694 p. New York: McGraw-Hill 1960.

    Google Scholar 

  • Vinogradov, A.P., and V.I. Grinenko: The effect of enclosing rocks on the isotopic composition of sulfur in sulfide ore minerals. Geochim. Internat. 1, 468–474 (1964).

    Google Scholar 

  • —, M.S. Shupakhin, and V.A. Grinenko: Some data on the isotopic composition of sulfur in sulfides. Geochemistry (USSR) (English Transl.) 3, 221–225 (1957).

    Google Scholar 

  • Wager, L.R., E.A. Vincent, A.A. Smales, and P. Batholome: Sulfides in the Skaergaard intrusion, East Greenland. Econ. Geol. 52, 855–903 (1957).

    Article  Google Scholar 

  • Wilson, H.D.B., and W.C. Brisbin: Regional structure of the Thompson-Moak Lake nickel belt. Can. Inst. Min. Metall. Trans. 64, 470–477 (1961).

    Google Scholar 

  • Zontov, N.S.: The geological structure of the copper-nickel deposit of the northern part of Rudnaya Mountain (Noril'sk region): Geol. of Ore Deposits (Geologiya Rudnykh Mestorozhdenii): Acad. Sci. U.S.S.R. 1, No. 5, 3–20 (1959); abstracted and translated by E. A. Alexandrov. Econ. Geol. 56, 1001 (1961).

    Google Scholar 

  • Zurbrigg, H.F.: Thompson mine geology. Can. Mining Met. Bull. 56, 451–460 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheney, E.S., Lange, I.M. Evidence for sulfurization and the origin of some sudbury-type ores. Mineral. Deposita 2, 80–94 (1967). https://doi.org/10.1007/BF00206581

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00206581

Keywords

Navigation