Skip to main content
Log in

Structural features of ophiolitic chromitites in the Zambales Range, Luzon, Philippines

  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The chromitite-bearing peridotites of the Zambales mafic-ultramafic complex form the lowermost level of the Zambales ophiolite, which exposes a complete ophiolitic sequence. The chromitites occur close to the peridotite/gabbro transition zone.

The chromite orebodies are structurally classified into three major types: (1) concordant tabular deposits, (2) strings of pods and (3) pocketlike deposits.

Concordant tabular deposits show a gradational transition from chromitite to host rock (modal grading) and are characterized by the parallelism of ore and host-rock structures. Primary magmatic features like inch-scale layering, size grading, glomeroporphyric chromite aggregates, skeletal chromite growth and adcumulus growth (cumulus textures) are common.

The concordant chromite bodies are often tectonically disrupted and boudined forming strings of pods or fault-controlled pocketlike deposits. With increasing tectonization chromite shows pull-apart textures and lineations (plastic deformation), shearing, prismatic jointing, brecciation and mylonitization (brittle deformation). Recrystallization of cataclastic chromite occurs on a microscopic scale.

Plastic deformation is caused by mantle flow and/or the volume increase of the peridotites during serpentinization. The influence of mantle flow is indicated by the orientation of the pod strings and lineations in chromitite perpendicular to the ridge axis. Brittle deformation of chromite (cataclasis) and disruption by faults is related to the emplacement of the ophiolite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, Z.: Stratigraphic and textural variations in the chromite composition of the ophiolitic Sakhakot-Qila Complex, Pakistan. Econ. Geol. 79:1334–1359 (1984)

    Google Scholar 

  • Bacuta, G. C.: Geology of some alpine-type chromite deposits in the Philippines. Philippine Bureau of Mines, Manila, 22 pp. (1978)

    Google Scholar 

  • Brown, M.: Textural and geochemical evidence for the origin of some chromite deposits in the Oman ophiolite. In: A. Panayiotou (ed.), Ophiolites, Proced. Internat. Ophiolite Symp., Cyprus 1979, 714–721 (1980)

  • Burgath, K., Weiser, T.: Primary features and genesis of Greek podiform chromite deposits. In: A. Panayiotou (ed.), Ophiolites, Proced. Internat. Ophiolite Symp., Cyprus 1979, 675–690 (1980)

  • Cassard, D., Nicolas, A., Rabinovitch, M., Moutte, J., Leblanc, M., Prinzhofer, A.: Structural classification of chromite pods in Southern New Caledonia. Econ. Geol. 76:805–831 (1981)

    Google Scholar 

  • Chakraborty, K. L., Chakraborty, T. L.: Geological features and origin of the chromite deposits of Sukinda Valley, Orissa, India. Mineral. Deposita 19:256–265 (1984)

    Google Scholar 

  • Christiansen, F.: Structural analysis of some ophiolitic chromitites in Sultanate of Oman. Ofioliti 7:221–230 (1982)

    Google Scholar 

  • DeBoer, J., Odom, L.A., Ragland, P.C., Snider, F.G., Tilford, N.R.: The Bataan Orogene: Eastward subduction, tectonic rotations, and volcanism in the western Pacific (Philippines). Tectonophysics, 67:251–282 (1980)

    Google Scholar 

  • Dickey, J.S.: A hypothesis of origin for podiform chromite deposits. Geochim. Cosmochim. Acta 39:1061–1074 (1975)

    Google Scholar 

  • Dolino, J.L., Aleria, D.M.: Report on the evaluation of the chromite deposit of Orbit Philippines Consolidated Mines Inc., for purposes of tax-exemption under P.D. 463. Philippine Bureau of Mines, Manila, 12 pp. (1976)

    Google Scholar 

  • Fernandez, N.S.: Notes on the geology and chromite deposits of the Zambales Range. The Philippine Geologist 14:1, 1–8 (1960)

    Google Scholar 

  • Fontanos, C.A., Obias, J.: Evaluation of the chromite deposit at Kinamaligan, Amongan, Iba, Zambales, unpublished report, 11 pp. (1960)

  • Friedrich, G., Brunemann, H.G., Wilcke, J., Stumpfl, E.F.: Chrome-spinels in lateritic soils and ultramafic source rocks, Acoje Mine, Zambales, Philippines. In: UNESCO, An Internat. Symp. on Metallogeny of Mafic and Ultramafic Complexes, Athen, Vol. 1, 257–278 (1981)

  • Ghisler, M.: The geology, mineralogy and geochemistry of the pre-orogenic archean stratiform chromite deposit at Fiskenaesset, West Greenland. Monogr. Ser. Mineral Deposits 14:156 pp. (1976)

    Google Scholar 

  • Greenbaum, D.: Magmatic processes at ocean ridges: evidence from the Troodos massif, Cyprus. Nature Phys. Sci. 238:18–21 (1972)

    Google Scholar 

  • Greenbaum, D.: The chromitiferous rocks of the Troodos Ophiolite Complex, Cyprus. Econ. Geol. 72:1175–1194 (1977)

    Google Scholar 

  • Hawkins, J.W., Evans, C.A.: Geology of the Zambales Range, Luzon, Philippine Islands: Ophiolite derived from an island arc — back arc basin pair. In: D. Hayes (ed.), The tectonic and geologic evolution of Southeast Asian seas and islands, Part 2, Am. Geophys. Union, Wash. D.C., 95–123 (1983)

    Google Scholar 

  • Hock, M.: Podiforme Chromitvorkommen in der Zambales Range, Luzon, Philippinen. Diss., Techn. Hochsch. Aachen, Germany, 233 pp. (1983)

    Google Scholar 

  • Ignacio, F.C.: Composite underground plan of Acoje Mine, scale 1″=200′. Acoje Mining Co. Inc., Sta. Cruz, Zambales, Philippines (1979)

  • Jackson, E.D.: The origin of ultramafic rocks by cumulus processes. Fortschr. Mineral. 48:1, 128–174 (1971)

    Google Scholar 

  • Jackson, E.D., Thayer, T.P.: Some criteria for distinguishing between stratiform, concentric, and alpine-type peridotitegabbro complexes. In: Proc. 24th Int. Geol. Congr., Section 2, 289–296 (1972)

  • Jagitsch, R.: The synthesis of some skarn minerals from the powdered components. Ark. Kem. 9:319 (1956)

    Google Scholar 

  • Karig, D. E.: Origin and development of marginal basins in the western Pacific. J. Geophys. Res. 76:2542–2561 (1971)

    Google Scholar 

  • Lago, B., Rabinovicz, M., Nicolas, A.: Podiform chromite orebodies: a genetic model. J. Petrol. 23:103–125 (1982)

    Google Scholar 

  • Leblanc, M.: Chromite growth, dissolution and deformation from a morphological view point: SEM investigations. Mineral. Deposita 15:201–210 (1980)

    Google Scholar 

  • Leblanc, M., Violette, J.F.: Distribution of aluminum-rich and chromium-rich chromite pods in ophiolite peridotites. Econ. Geol. 78:293–301 (1983)

    Google Scholar 

  • Moutte, J.: Chromite deposits of the Tiébaghi Ultramafic Massif, New Caledonia. Econ. Geol. 77:576–591 (1982)

    Google Scholar 

  • Neary, C.R. and Brown, M.A.: Chromites from the Al'Ays Complex, Saudi Arabia, and the Semail Complex, Oman. In: M.S. Al-Shanti (convenor), Evolution and mineralization of the Arabian-Nubian Shield: Symposium, Proc., New York, Pergamon Press, Vol. 2, 193–205 (1979)

    Google Scholar 

  • Nicolas, A., Violette, J.F.: Mantle flow at oceanic spreading centers: models derived from ophiolites. Tectonophysics 81:319–339 (1982)

    Google Scholar 

  • Paringit, R.U.: Highlights of the geology and chromite ore mineralization at Acoje Mine, Sta. Cruz, Zambales., J. Geol. Soc. Philippines 31:3, 13–16 (1977)

    Google Scholar 

  • Rossman, D.L.: Chromite deposits of the north-central Zambales Range, Luzon, Philippines. U.S. Geol. Surv. Open File Rep., 64 pp. (1964)

  • Schweller, W.J., Karig, D.E., Bachman, S.B.: Original setting and emplacement history of the Zambales Ophiolite, Luzon, Philippines, from stratigraphic evidence. In: D. Hayes (ed.), The tectonic and geologic evolution of Southeast Asian seas and islands, Part 2, Amer. Geophys. Union, Wash. D.C., 124–138 (1983)

    Google Scholar 

  • Stoll, W.C.: Geology and petrology of the Masinloc chromite deposit, Zambales, Luzon, Philippine Islands. Bull. Geol. Soc. Amer. 69:419–448 (1958)

    Google Scholar 

  • Thayer, T.P.: Application of structural petrology in exploration for podiform chromite deposits. In: Rep. 5th Meet. Geol. F.R.P. Yugoslavia, Belgrade, 295–303 (1962)

  • Thayer, T.P.: Principal features and origin of podiform chromite deposits, and some observations on the Guleman-Soridag district, Turkey. Econ. Geol. 59:1497–1524 (1964)

    Google Scholar 

  • Thayer, T.P.: Serpentinization considered as a constant-volume metasomatic process. Amer. Mineralogist 51:685–710 (1966)

    Google Scholar 

  • Thayer, T.P.: Gravity differentiation and magmatic re-emplacement of podiform chromite deposits., in: H.D.B. Wilson (ed.), Magmatic ore deposits, Econ. Geol. Monogr. 4:132–146 (1969)

    Google Scholar 

  • Thayer, T.P.: Chromite segregations as petrogenetic indicators. Geol. Soc. South Africa, Spec. Publ. 1, 380–390 (1970)

  • Villones, I.R., Bacuta, G.C., Balce, R.G.: Chromite deposits of the Zambales Mafic-Ultramafic Complex, Luzon, Philippines. In: UNESCO, An Internat. Symp. on Metallogeny of Mafic and Ultramafic Complexes, Athen, Vol. 1, 165–182 (1980)

  • Wager, L.R., Brown, G.M., Wadsworth, W.J.: Types of igneous cumulates. J. Petrol. 1:73–85 (1960)

    Google Scholar 

  • Wolff, F.: Rohstoffwirtschaftliche Länderberichte, Bd. XV, Philippinen. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, Germany, 190 pp. (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hock, M., Friedrich, G. Structural features of ophiolitic chromitites in the Zambales Range, Luzon, Philippines. Mineral. Deposita 20, 290–301 (1985). https://doi.org/10.1007/BF00204289

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00204289

Keywords

Navigation