Skip to main content
Log in

Mycorrhizal associations in Hong Kong Fagaceae

IV. The mobilization of organic and poorly soluble phosphates by the ectomycorrhizal fungus Pisolithus tinctorius

  • Original Papers
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Pisolithus tinctorius (Pers.) Coker and Couch is capable of mobilizing non-mobile phosphates. Organic phosphates are broken down enzymatically by the fungal surface acid phosphatases whereas poorly soluble phosphates are solubilized by the ability of the fungus to excrete protons and organic acids. The accumulation of phosphate in the form of insoluble polyphosphate stored in the vacuoles is positively correlated with the external available phosphate pool. The major cation linked to the stored phosphate polymers in this fungus is calcium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen SE (1989) Chemical analysis of ecological materials, 2nd edn. Blackwell, London

    Google Scholar 

  • Bennett J, Scott J (1971) Inorganic polyphosphates in wheat stem rust fungus and in rust-infected wheat leaves. Physiol Plant Pathol 1:185–198

    CAS  PubMed  Google Scholar 

  • Bielski RL (1973) Phosphate pools, phosphate transport, and phosphate availability. Annu Rev Plant Physiol Plant Mol Biol 24:225–252

    Google Scholar 

  • Berlyn GP, Miksche JP (1976) Botanical microtechnique and cytochemistry. Iowa State University Press, Ames, Iowa

    Google Scholar 

  • Calleja M, Monsain D, Lecouvreur B, D'Auzae J (1980) Influence de la carence phosphatée sur les activités phosphatases acides de trios champignons mycorrhiziens: Hebeloma edurum Metrod, Suillus granulatus (L. and Fr.) O. Kuntze et Pisolithus tinctorius (Pers.) Coker and Couch. Physiol Veg 18:489–504

    Google Scholar 

  • Callow JA, Capaccio LCM, Parish G, Tinker PB (1978) Detection and estimation of polyphosphate in vesicular-arbuscular mycorrhizas. New Phytol 80:125–134

    Google Scholar 

  • Chan WK, Griffiths DA (1988) The mycorrhizae of Pinus elliottii Engel. and P. massoniana Lamb. in Hong Kong. Mem Hong Kong Nat Hist Soc 18:11–17

    Google Scholar 

  • Chan WK, Griffiths DA (1991) The induction of mycorrhiza in Eucalyptus microcorys and E. torelliana grown in Hong Kong. For Ecol Manage 43:15–24

    Google Scholar 

  • Chilvers GA, Harley JL (1980) Visualization of phosphate accumulation in beech mycorrhizas. New Phytol 84:319–326

    Google Scholar 

  • Grant CJ (1962) The soils and agriculture of Hong Kong. Government Printer, Hong Kong

    Google Scholar 

  • Harley JL (1978a) Ectomycorrhizas as nutrient absorbing organs. Proc R Soc London B 203:1–21

    Google Scholar 

  • Harley JL (1978b) Nutrient absorption by ectomycorrhizas. New Phytol 87:325–332

    Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, London New York

    Google Scholar 

  • Juma NG, Tabatabai MA (1977) Effects of trace elements on phosphatase activity in soils. Soil Sci Soc Am J 41:343–346

    Google Scholar 

  • Lapeyrie FF, Chilvers GA, Douglass PA (1984) Formation of metachromatic granules following phosphate uptake by mycelial hyphae of an ectomycorrhizal fungus. New Phytol 98:345–360

    Google Scholar 

  • Lapeyrie F, Ranger J, Vairelles D (1990) Phosphate-solutilizing activity of ectomycorrhizal fungi in vitro. Can J Bot 69:342–346

    Google Scholar 

  • Marx DH (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism off mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59:153–163

    Google Scholar 

  • Marx DH (1977) Tree host range and world distribution of the ectomycorrhizal fungus Pisolithus tinctorius. Can J Microbiol 23:217–223

    Google Scholar 

  • Marx DH, Artman JD (1979) Pisolithus tinctorius ectomycorrhizae improve survival and growth of pine seedlings on acid coal spoils in Kentucky and Virginia. Reclam Rev 2:23–31

    Google Scholar 

  • Orlovich DA, Ashford AE, Cox GC (1989) A reassessment of polyphosphate granule composition in the ectomycorrhizal fungus Pisolithus tinctorius. Aust J Plant Physiol 16:107–115

    Google Scholar 

  • Raven JA, Smith FA (1976) Nitrogen assimilation and transport in vascular land plants in relation to intracellular pH regulation. New Phytol 76:415–431

    Google Scholar 

  • Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307

    Article  CAS  Google Scholar 

  • Tam PCF, Griffiths DA (1993a) Mycorrhizal associations in Hong Kong Fagaceae. I. Techniques for the rapid detection and observation of ectomycorrhizas in local genera. Mycorrhiza 2:111–115

    Google Scholar 

  • Tam PCF, Griffiths DA (1993b) Mycorrhizal associations in Hong Kong Fagaceae. III. The ontogeny of mycorrhizai development, growth and nutrient uptake by Quercus myrsinaefolia seedlings inoculated with Pisolithus tinctorius. Mycorrhiza 2:125–131

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tam, P.C.F., Griffiths, D.A. Mycorrhizal associations in Hong Kong Fagaceae. Mycorrhiza 2, 133–139 (1993). https://doi.org/10.1007/BF00203859

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00203859

Key words

Navigation