Skip to main content
Log in

The Cu-Zn-S system

  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The phase relations in the Cu-Zn-S system were studied at temperatures ranging from 100 ° to 1050 °C with emphasis on the 500 ° and 800 °C isotherms. All experiments were performed in closed, evacuated silica tubes in which vapor always is a phase. Ternary phases did not appear in any of these experiments. At 800 °C tie-lines exist between cubic ZnS (sphalerite) and the digenite-chalcoite solid solution, between ZnS and three CuZn alloys (α, β, γ) and between ZnS and ZnCu liquid containing from zero to about 30 wt % Cu. Only the cubic, sphalerite, form of ZnS was encountered in the present study. At 800 °C the solid solution of ZnS in Cu2S is 7.0 ± 1 wt % and the solid solution of Cu2S in ZnS is less than 1.0 wt %. At lower temperatures ZnS coexists with all other phases once they become stable, i.e., ε-CuZn (<598 °C), CuS (<507 °C), and blue-remaining covellite (<157 °C). At 500 °C the solid solution of ZnS in Cu2S is 1.5±0.5 wt % and that of Cu2S in ZnS is less than 0.1 wt %. The presence of ZnS depresses the temperature of the hexagonal ⇄ cubic inversion in Cu2S by about 13 °C, but does not measurably affect the temperature of the monoclinic ⇄ hexagonal inversion in Cu2S nor that of the cubic ⇄ cubic inversion in Cu9S5. The coexistence in nature of sphalerite and copper-sulfides is discussed in light of the low temperature phase relations in the Cu-Zn-S system.

Zusammenfassung

Die Phasengleichgewichtsredaktionen des Dreistoffsystems Cu-Zn-S wurden über einen weiten Temperaturbereich, nämlich von 100 °C bis zu 1050 °C und dabei besonders nachdrücklich die 500 ° und 800 °C-Isothermen, untersucht. Alle Experimente wurden in abgeschmolzenen und vorher evakuierten Quarzglasampullen durchgeführt, in welchen eine Dampfphase (vapor) stets gegenwärtig war. In keinem der Experimente war das Vorhandensein einer ternären Phase zu verzeichnen. Bei 800 °C verlaufen Konodenscharen vom kubischen ZnS (Zinkblende) zur Digenit-Kupferglanz-Mischkristallreihe, ferner Konoden zwischen ZnS und drei Cu-Zu-Legierungen (α, β, γ) und zwischen ZnS und einer Zn-Cu-Schmelze von 0 bis ca. 30 Gew.-% Cu. In der hier vorliegenden Arbeit trat nur kubisches ZnS (Zinkblende) auf. Cu2S vermag bei 800 °C 7,0±1 Gew.-% ZnS in fester Lösung aufzunehmen, während die Löslichkeit von Cu2S in ZnS weniger als 1,0 Gew.-% beträgt. Mit zunehmender Temperaturerniedrigung koexistiert ZnS mit allen übrigen Phasen des Systems, sobald diese stabil werden, z. B. ε-CuZn (<598 °C), CuS (<507 °C) und blaubleibender Covellin (<157 °C). Bei 500 °C beträgt die Löslichkeit von ZnS in Cu2S nur noch 1,5±0,5 Gew.-% und die von Cu2S in ZnS weinger als 0,1 Gew.-%. Die Gegenwart von ZnS erniedright die Inversionstemperatur von hexagonalem ⇄ kubischen Cu2S um etwa 13 °C, hat aber weder einen meßbaren Einfluß auf die Inversionstemperatur des monoklinen ⇄ hexagonalen Cu2S noch auf die kubisch ⇄ kubische Inversion des Cu9S5. Angeischts der im Cu-Zn-S-System ermittelten Phasenbeziehungen bei niedrigen Temperaturen werden die Koexistenz natürlicher Zinkblende mit Kupfersulfiden diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrell, S. O., Scoon, J. H., Muir, I. D., Long, J. V. P., McConnell, J. D. C., Peckett, A.: Mineralogy and petrology of some lunar samples. Science 167 3918 583–586 (1970).

    Google Scholar 

  • Bank, E. R.: A study of the transformation of sphalerite to wurtizite in atmosphere of zinc and sulfur. Unpub. Ph. D. Thesis, Univ. of Denver, 58 p., 1967.

  • Barnes, H. L., Scott, S. D.: Stoichiometry of sulfide minerals. Program of Ann. Meetings. Geol. Soc. Am. 11 (1966).

  • Bartikyan, P. M.: Native lead and zinc in the rocks of Armenia. Zap. Vses. Mineralog. Obschestva 95, 99–102 (1966).

    Google Scholar 

  • Barton, P. B., Skinner, B. J.: Sulfide mineral stabilities in Geochemistry of Hydrothermal Ore Deposits, p. 236–333; H.L. Barnes, ed. Holt, Rinehart Winston: 1967.

  • Boyle, R. W.: Native zinc at Keno Hill. Can. Mineralogist 6, 692–694 (1961).

    Google Scholar 

  • Buck, D. C., Strock, L. W.: Trimorphism in zinc sulfide. Am. Mineralogist 40, 192–200 (1955).

    Google Scholar 

  • Clark, A. H., Sillitoe, R. H.: Native zinc and α—Cu, Zn from Mina Dulcinea de Llampos, Copiapo, Chile. Am. Mineralogist 55, 1019–1021 (1970a).

    Google Scholar 

  • — Cuprian sphalerite and a probable copperzinc sulfide, Cachiyuyo de Llampos, Copiapo, Chile. Am. Mineraologist 55, 1021–1025 (1970b).

    Google Scholar 

  • Craig, J. R., Kullerud, G.: Phase relations and mineral assemblages in the copper-lead-sulfur system. Am. Mineralogist 53, 145–161 (1968).

    Google Scholar 

  • Elliot, R. P.: Constitution of binary alloys, 877 p., First supplement. New York: McGraw-Hill 1965.

    Google Scholar 

  • Evans, H. T.: A crystal structure study of low chalcocite. Geol. Soc. Am. Program with Abstracts, p. 92 (1968).

  • Fleischer, M.: Minor elements in some sulfide minerals. Econ. Geol. Fiftieth aniversary volume 970–1024 (1955).

  • Frenzel, G., Ottemann, J.: Eine Sulfid Paragenese mit kupferhaltigem Zonarpyrit von Nukundamu/Fiji. Mineral. Deposita 1, 307–316 (1967).

    Google Scholar 

  • Friedrich, K.: Die Zinkblende als Steinbildner. Metallurgie. 5, 114–128 (1908).

    Google Scholar 

  • Gmelins Handbuch der Anorganischen Chemie — Cu (1965) Teil B. Lieferung 3, no. 60.

  • Goncharova, T. Ya.: On native metallic zinc. Zap. Vses. Mineralog. Obshchestva 88, 458–459 (1959).

    Google Scholar 

  • Hansen, M., Anderko, K.: Constitution of Binary Alloys, 1305 p. New York: McGraw-Hill 1958.

    Google Scholar 

  • Jensen, E.: Melting relations of chalcocite. Norsk. Videns-Akad., Oslo, Avhandl. I. Mat.-Natur. Kl. 6, 14 p. (1947).

  • Kendall, E. J. M.: Structural peculiarities of zinc sulphide, cadmium sulphide, cadmium telluride and gallium phosphide. Phys. Letters 8, 237–238 (1964).

    Google Scholar 

  • Kubachovski, O., Catterall, J. A.: Thermochemical data of alloys, 200 p. New York: Pergamon Press 1956.

    Google Scholar 

  • Kullerud, G.: Review and evaluation of recent research on geologically significant sulfide-type systems. Fortschr. Mineral. 41, 221–270 (1964).

    Google Scholar 

  • — Covellite stability relations in the Cu—S system. Freiberger Forschungsh. C 186, 145–160 (1965).

    Google Scholar 

  • —: Pyrite stability relations in the Fe—S system. Econ. Geol. 54, 533–572 (1959).

    Google Scholar 

  • Yund, R. A.: Cu—S system (abstr.). Geol. Soc. Am. Bull. 71, 1911–1912 (1960).

    Google Scholar 

  • — The Ni—S system and related minerals. J. Petrol. 3, 126–175 (1962).

    Google Scholar 

  • Massalski, T. B., Kittl, J. E.: The low-temperature solid solubility limits of the α and β phases in the Cu—Zn system. J. Australian Inst. Metals 8, 91–97 (1963).

    Google Scholar 

  • Minomura, S., Drickamer, H. G.: Pressure induced transitions in silicon, germanium and some III–V compounds. Phys. Chem. Solids 23, 451–456 (1962).

    Google Scholar 

  • Moh, G.: Experimentelle Untersuchungen an Zinnkiesen und analogen Germaniumverbindungen. Neues Jahrb. Mineral., Abhandl. 94, 1125–1146 (1960).

    Google Scholar 

  • — Blaubleibender covellite. Annual Report of the Geophysical Laboratory of the Carnegie Institution of Washington. Year Book 63, 208–209 (1964).

    Google Scholar 

  • Morimoto, N., Koto, K.: Phase relations of the Cu—S system at low temperatures: stability of anilite. Am. Mineralogist 55, 106–117 (1970).

    Google Scholar 

  • —, Kullerud, G.: Polymorphism in digenite. Am. Mineralogist 48, 110–123 (1963).

    Google Scholar 

  • Munson, R. A.: Synthesis of copper disulfide. Inorg. Chem. 5, 1296–1297 (1966).

    Google Scholar 

  • Nesterov, V. N., Ponomarev, V. D.: Vapor pressure of zinc sulfide over the melts of ZnS—Cu2S at 1000–1200 °C. Akad. Nauk. Kazakh. S. S. R., Ser. Met. Obogaschi Ogneup. 3, 33–44 (1958) [C. A. 52, 1335/e].

    Google Scholar 

  • — The vapor pressure and activity of zinc sulfide in the ZnS—Cu2S system at 1200–1400 °C. Invest. Akad. Nauk Kazakh. S.S.R., Ser. Met. Obogaschi Ogneup. 3, 64–72 (1960) [C. A. 55, 6115].

    Google Scholar 

  • Nickel, E. H.: A review of the properties of zinc sulphide. Department of Mines and Technical Surveys, Ottawa, Canada. Mines Branch Information Circular IC 170, 38 p. (1965).

  • Novoselev, S. S.: Effect of zinc sulfide on properties of copper mats. Tsvetnye Metally 28, 3, 15–20 (1955) [C. A. 54, 7476 d].

    Google Scholar 

  • Park, C. F., MacDiarmid, R. A.: Ore deposits. San Francisco: W. H. Freeman 1964.

    Google Scholar 

  • Rooymans, C. J. M.: A phase transformation in the wurtzite and zinc blende lattice under pressure. J. Inorg. Nucl. Chem. 25, 253–255 (1963).

    Google Scholar 

  • Roseboom, E. H.: An investigation of the system Cu—S and some natural copper sulfides between 25° and 700 °C. Econ Geol. 61, 641–672 (1966).

    Google Scholar 

  • Samara, G. A., Drickamer, H. G.: Pressure induced phase transitions in some II–VI compounds. Phys. Chem. Solids 23, 457–461 (1962).

    Google Scholar 

  • Shalimova, K. V., Morozova, N. K.: The effect of excess zinc on the crystal structure of ZnS. Kristallografiya 9, 559–560 (1965).

    Google Scholar 

  • Soldatov, V. S.: The crystal structure of films of zinc sulfide. Soviet Phys. Cryst. 8, 362–364 (1963).

    Google Scholar 

  • Shunk, F. A.: Constitution of Binary Alloys. Second Suppl. 720 p. New York: McGraw-Hill 1969.

    Google Scholar 

  • Skinner, B. J., Barton, P. B., Kullerud, G.: Effect of FeS on the unit cell edge of sphalerite. A revision. Econ. Geol. 54, 1040–1046 (1959).

    Google Scholar 

  • —, Boyd, F. R., England, J. L.: A high pressure polymorph of chalocite, Cu2S. Trans. Am. Geophys. Un. 45, 121–122 (1964).

    Google Scholar 

  • Taylor, L. A., Kullerud, G.: Pyrite-type compounds. Annual Report of the Physical Laboratory of the Carnegie Institution of Washington, Year Book 69, 322–325 (1971).

    Google Scholar 

  • Toulmin, P., Barton, P. B.: A thermodynamic study of pyrite and pyrrhotite. Geochim. Cosmochim. Acta 28, 614–671 (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craig, J.R., Kullerud, G. The Cu-Zn-S system. Mineral. Deposita 8, 81–91 (1973). https://doi.org/10.1007/BF00203352

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00203352

Keywords

Navigation