Skip to main content
Log in

Simulated bipolar cells in fovea of human retina

I. Computer simulation

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

This static bipolar cell (BC) model of the human fovea is based on a number of reasonable assumptions. The human fovea is directly responsible for visual acuity and color vision. The fovea can be considered as having two parts; a central fovea with only red- and green-sensitive cones and a parafovea with blue-sensitive cones added to the other two. A cone mosaic can be precisely organized spatially into unit hexagons that specify inputs to horizontal cells (HC) and BCs. The retina up to and including BCs is piece-wise linear, i.e. at a given steady-state adapting light intensity BC outputs are linear functions of the physical image. BC centers receive inputs directly from weighted cones, while antagonistic surrounds receive inverted inputs from HCs. Appropriate optical and chromatic filtering due to the eye that are taken from human data are incorporated into the model. Chromatic aberrations are simulated by three separate point spread functions that also are taken from human data. Automatic gain control of cones is a function of intensity and wavelength of the steady adapting light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramov I, Gordon J (1975) Seeing. In: Carterette E, Friedman M (eds) Handbook of perception, vol III. Academic Press, New York, pp 359–406

    Google Scholar 

  2. Ashmore JF, Copenhagen DP (1983) An analysis of transmission from cones to hyperpolarizing bipolar cells in the retina of the turtle. J Physiol 340:569–598

    Google Scholar 

  3. Barlow HB (1972) Dark and light adaptation: psychophysics. In: Jameson D, Hurvick LM (eds) Handbook of sensory physiology vol VII/4. Springer, Berlin Heidelberg New York

    Google Scholar 

  4. Barlow HB, Mollon JD (1982) The senses. Cambridge University Press, Cambridge, pp 176–180

    Google Scholar 

  5. Baylor DA (1974) Lateral interaction between vertebrate photoreceptors. Fed Proc 33:1074–1077

    Google Scholar 

  6. Bossomaier TRJ, Snyder AW, Hughes A (1985) Irregularity and aliasing: solution? Vision Res 25:145–147

    Google Scholar 

  7. Brindley GS (1954) The summation areas of human colour-receptive mechanism at increment threshold. J Physiol 124:400–408

    Google Scholar 

  8. Brindley GS, DuCroz JJ, Rushton WAH (1966) The flicker fusion frequency of the blue-sensitive mechanisms of colour vision. J Physiol 183:497–500

    Google Scholar 

  9. Caelli TM (1981) Some psychophysical determinants of discrete moire patterns. Biol Cybern 39:97–103

    Google Scholar 

  10. Cicerone CM, Nerger JL (1989) The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis. Vison Res 29:115–128

    Google Scholar 

  11. Crook JM, Lange-Malecki B, Lee BB, Valberg A (1988) Visual resolution of macaque retinal ganglion cells. J Physiol 396:205–224

    Google Scholar 

  12. Crook JM, Lee BB, Tigwell DA, Valberg A (1987) Thresholds to chromatic spots of cells in the macaque geniculate nucleus as compared to detection sensitivity in man. J Physiol 392:193–211

    Google Scholar 

  13. Dartnall HJA, Bowmaker JK, Mollons JD (1983) Human visual pigments: microspectrophotometric results from the eyes of seven persons. Proc R Soc Lond B 220:115–130

    Google Scholar 

  14. de Monasterio FM, McCrane EP, Newlander JK, Schein SJ (1985) Density profile of blue-sensitive cones along the horizontal meridian of macaque retina. Invest Ophthalmol Vis Sci 26:289–302

    Google Scholar 

  15. Detweiler PB, Hodgkin AL (1979) Electrical coupling between cones in turtle retina. J Physiol 291:75–100

    Google Scholar 

  16. de Vries HL (1946) Luminosity curve of trichromats. Nature (London) 157:736–737

    Google Scholar 

  17. Gerschenfeld HM, Piccolino M (1980) Sustained feedback effects of L-horizontal cells in turtle cones. Proc R Soc Lond Ser B 206:465–480

    Google Scholar 

  18. Gouras P (1968) Identification of cone mechanisms in monkey ganglion cells. J Physiol 199:533–547

    Google Scholar 

  19. Gubisch RW (1967) Optical performance of the human eye. J Opt Soc Am 57:407–415

    Google Scholar 

  20. Hood DC, Finkelstein MA (1986) Sensitivity to light. In: Boff R, Kaufman L, Thomas JP (eds) Handbook of perception and human performance, vol 1. Wiley, New York

    Google Scholar 

  21. Hood DC, Finkelstein MA, Buckingham E (1979) Psychophysical tests of models of the response function. Vision Res 19:401–406

    Google Scholar 

  22. Jacobs GH (1981) Comparative color vision. Academic Press, New York London Toronto

    Google Scholar 

  23. Kaplan E, Shapley RM (1986) The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. Proc Natl Acad Sci USA 83:2755–2757

    Google Scholar 

  24. Kolb H (1983) The morphology of the bipolar cells, amacrine cells and ganglion cells in the retina of the turtle, pseudemys scripta elegans. Phil Trans R Soc Lond B 298:355–393

    Google Scholar 

  25. Kolb H, Nelson R, Marianni A (1981) Amacrine cells, bipolar cells and ganglion cells of the cat retina. A Golgi study. Vision Res 21:1081–1114

    Google Scholar 

  26. Lipetz LE (1988) Universal human visual pigment curves from psychophysical data. Color Res Appl 13:276–288

    Google Scholar 

  27. Marc RE, Sperling HG (1977) Chromatic organization of primate cones. Science NY 196:454–456

    Google Scholar 

  28. Mariani AP (1984) Bipolar cells in monkey retina selective for the cone likely to be blue-sensitivie. Nature 308:184–186

    Google Scholar 

  29. McGuire BA, Steven JK, Sterling P (1984) Microcircuitry of bipolar cells in cat retina. J Neurosci 4:2920–2938

    Google Scholar 

  30. Miller RF, Dacheux RF (1976) Synaptic organization and ionic basis of on and off channels in mudpuppy retina. I. Intracellular analysis of chloride-sensitive electrogenic properties of receptors, horizontal cells, bipolar cells, and amacrine cells. J Gen Physiol 67:639–659

    Google Scholar 

  31. Naka K-I, Rushton WAH (1967) The generation and spread of S-potentials in the fish (Cyprinidae). J Physiol 192:437–461

    Google Scholar 

  32. Perry VH, Silveira LCL (1988) Functional lamination in the ganglion cells layer of the macaque's retina. Neuroscience 25:217–223

    Google Scholar 

  33. Richter A, Simon EJ (1975) Properties of centre-hyperpolarizing, red-sensitive bipolar cells in the turtle retina. J Physiol 248:317–334

    Google Scholar 

  34. Schiller PH (1986) The central visual system. Vision Res 26:1351–1386

    Google Scholar 

  35. Schultze M (1866) Zur Anatomie und Physiologie der Retina. Arch Mikrosk Anat 2:175–286

    Google Scholar 

  36. Shapley R, Enroth-Cugell C (1984) Visual adaptation and retinal gain controls. Prog Retinal Res 3:263–346

    Google Scholar 

  37. Shapley R, Perry VH Cat and monkey retinal ganglion cells and their visual functional roles. Trends Neurosci 9:229–235

  38. Siminoff R (1980) Modeling of the vertebrate visual system. 1. Wiring diagram of the cone retina. J Theor Biol 86:673–708

    Google Scholar 

  39. Siminoff R (1985) Modelling the effects of a negative feedback circuit from horizontal cells to cones on the impulse response of cones and horizontal cells in the catfish retina. Biol Cybern 52:307–313

    Google Scholar 

  40. Siminoff R (1985) Dynamics of the cone-horizontal cell circuit in the turtle retina. Biol Cybern 52:1–14

    Google Scholar 

  41. Siminoff R (1985) Model of the cone-horizontal cell circuit in the catfish retina. Biol Cybern 51:363–374

    Google Scholar 

  42. Siminoff R (1986) Dynamics of chromatic adaptation in cones of freshwater turtle. Biol Cybern 53:347–358

    Google Scholar 

  43. Smith VC, Pokorny J (1975) Spectral sensitivity of the foveal cone pigments between 400 and 500 nm. Vision Res 15:161–171

    Google Scholar 

  44. Thibos LN, Cheney FE, Walsh DJ (1987) Retinal limits to the detection and resolution of gratings. J Opt Soc Am A 4:1524–1529

    Google Scholar 

  45. Tigwell DA, Sauter J (1987) Parvocellular and magnocellular inputs to monkey striate cortical cells inferred from luminance and chromatic thresholds. Neuroscience 22:[Suppl.] S430

    Google Scholar 

  46. Toyoda J-I (1973) Membrane resistance changes underlying the bipolar cell response in the carp retina. Vision Res 13:283–294

    Google Scholar 

  47. Toyoda J-I, Hashimoto H, Ohtsu K (1973) Bipolar-amacrine transmission in the carp retina. Vision Res 13:299–307

    Google Scholar 

  48. Toyoda J-I, Tonosaki K (1978) Effects of polarization of horizontal cells in the on-centre bipolar cell of carp retina. Nature (London) 276:399–400

    Google Scholar 

  49. Tranchina D, Gordon J, Shapley R (1984) Retinal light adapative evidence for a feedback mechanism. Nature 310:31–36

    Google Scholar 

  50. Ts'o DY, Gilbert CD (1988) The organization of chromatic and spatial interactions in the primate striate cortex. J Neurosci 8:1712–1727

    Google Scholar 

  51. Verdon W, Adams AJ (1987) Short-wavelength-sensitive cones do not contribute to mesopic luminosity. J Opt Soc Am A 4:91–95

    Google Scholar 

  52. Vimal RLP, Pokorny J, Smith VC, Shevel SK (1989) Foveal cone thresholds. Vision Res 29:61–78

    Google Scholar 

  53. Walraven J (1974) A closer look at the tritanopic convergence point. Vision Res 14:1339–1343

    Google Scholar 

  54. Wässle H (1988) Sampling of visual space by retinal ganglion cells. (1988) Invest Ophthalmol Vis Sci 29:[Suppl 3] 117

    Google Scholar 

  55. Wässle H, Boycott BB, Illing RB (1981) Morphology and mosaic of on- and off-beta cells in the cat retina and some functional considerations. Proc R Soc Lond B 212:177–195

    Google Scholar 

  56. Wässle H, Peichl L, Boycott BB (1978) Topography of horizontal cells in the retina of the domestic cat. Proc R Soc Lond B 203:269–291

    Google Scholar 

  57. Wässle H, Riemann HJ (1978) The mosaic of nerve cells in the mammallian retina Proc R Soc Lond B 200:441–461

    Google Scholar 

  58. Williams DR (1985) Aliasing in human foveal vision. Vision Res 25:192–205

    Google Scholar 

  59. Williams DR (1985) Visibility of interference fringes near the resolution limit. J Opt Soc Am A2:1087–1093

    Google Scholar 

  60. Young RA (1986) Principal-component analysis of macaque lateral geniculate nucleus chromatic data. J Opt Soc Am A3:1735–1742

    Google Scholar 

  61. Zrenner E (1983) Neurophysiological aspects of color vision in primates. Springer, Berlin Heidelberg New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The major part of this work was done while the author was a Senior Research Associate of the National Research Council, USA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siminoff, R. Simulated bipolar cells in fovea of human retina. Biol. Cybern. 64, 497–504 (1991). https://doi.org/10.1007/BF00202614

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00202614

Keywords

Navigation