Skip to main content
Log in

Clostridial ADP-ribosyltransferases — Modification of low molecular weight GTP-binding proteins and of actin by clostridial toxins

  • Mini-Review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Adam-Vizi V, Rösener S, Aktories K, Knight DE (1988) Botulinum toxin-induced ADP-ribosylation and inhibition of exocytosis are unrelated events. FEBS Lett 238:277–280

    Google Scholar 

  • Adari H, Lowy DR, Willumsen BM, der Channing J, McCormick F (1988) Guanosine triphosphate-activating protein (GAP) interacts with the p21 ras effector binding domain. Science 240:518–521

    Google Scholar 

  • Aktories K, Frevert J (1987) ADP-ribosylation of a 21–24 kDa eukaryotic protein(s) by C3, a novel botulinum ADP-ribosyltransferase, is regulated by guanine nucleotide. Biochem J 247:363–368

    Google Scholar 

  • Aktories K, Wegner A (1989) ADP-ribosylation of actin by clostridial toxins. J Cell Biol 109:1385–1387

    Google Scholar 

  • Aktories K, Bärmann M, Ohishi I, Tsuyama S, Jakobs KH, Habermann E (1986a) Botulinum C2 toxin ADP-ribosylates actin. Nature 322:390–392

    CAS  PubMed  Google Scholar 

  • Aktories K, Ankenbauer T, Schering B, Jakobs KH (1986b) ADP-ribosylation of platelet actin by botulinum C2 toxin. Eur J Biochem 161:155–162

    Google Scholar 

  • Aktories K, Weller U, Chhatwal GS (1987) Clostridium botulinum type C produces a novel ADP-ribosyltransferase distinct from botulinum C2 toxin. FEBS Lett 212:109–113

    Google Scholar 

  • Aktories K, Rösener S, Blaschke U, Chhatwal GS (1988a) Botulinum ADP-ribosyltransferase C3. Purification of the enzyme and characterization of the ADP-ribosylation reaction in platelet membranes. Eur J Biochem 172:445–450

    Google Scholar 

  • Aktories K, Just I, Rosenthal W (1988b). Different types of ADP-ribose protein bonds formed by botulinum C2 toxin, botulinum ADP-ribosyltransferase C3 and pertussis toxin. Biochem Biophys Res Commun 156:361–367

    Google Scholar 

  • Aktories K, Braun U, Rösener S, Just I, Hall A (1989a) The rho gene product expressed in E. coli is a substrate of botulinum ADP-ribosyltransferase C3. Biochem Biophys Res Commun 158:209–213

    Google Scholar 

  • Aktories K, Reuner K-H, Presek P, Bärmann M (1989b) Botulinum C2 toxin treatment increases the G-actin pool in intact chicken cells: a model for the cytopathic action of actin-ADP-ribosylating toxins. Toxicon 27:989–993

    Google Scholar 

  • Al-Mohanna FA, Ohishi I, Hallett MB (1987) Botulinum C2 toxin potentiates activation of the neutrophil oxidase. FEBS Lett 219:40–44

    Google Scholar 

  • Althaus FR, Richter C (1987) ADP-ribosylation of proteins. Mol Biol Biochem Biophys 37:1–237

    Google Scholar 

  • Barbacid M (1987) ras Genes. Annu Rev Biochem 56:779–827

    Google Scholar 

  • Bokoch GM, Katada T, Northup JK, Hewlett EL, Gilman AG (1983) Identification of the predominant substrate for ADP-ribosylation by islet activating protein. J Biol Chem 258:2072–2075

    Google Scholar 

  • Böttinger H, Reuner KH, Aktories K (1987) Inhibition of histamine release from rat mast cells by botulinum C2 toxin. Int Arch Allergy Appl Immunol 84:380–384

    Google Scholar 

  • Braun U, Habermann B, Just I, Aktories K, Vandekerckhove J (1989) Purification of the 22-kDa protein substrate of botulinum ADP-ribosyltransferase C3 from porcine brain cytosol and its characterization as a GTP-binding protein highly homologous to the rho gene product. FEBS Lett 243:70–76

    Google Scholar 

  • Burns DL, Hewlett EL, Moss J, Vaughan M (1983) Pertussis toxin inhibits enkephalin stimulation of GTPase of NG108–15 cells. J Biol Chem 258:1435–1438

    Google Scholar 

  • Cassel D, Pfeuffer T (1978) Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc Natl Acad Sci USA 75:2669–2673

    Google Scholar 

  • Cassel D, Selinger Z (1977) Mechanism of adenylate cyclase activation by cholera toxin: inhibition of GTP hydrolysis at the regulatory site. Proc Natl Acad Sci USA 74:3307–3311

    Google Scholar 

  • Chardin P, Tavitian A (1986) The ral gene: a new ras-related gene isolated by the use of a synthetic probe. EMBO J 5:2203–2208

    Google Scholar 

  • Chardin P, Madaule P, Tavitian A (1988) Coding sequence of human rho cDNAs clone 6 and clone 9. Nucleic Acids Res 16:2717

    Google Scholar 

  • Chardin P, Boquet P, Madaule P, Popoff MR, Rubin EJ, Gill DM (1989) The mammalian G protein rho C is ADP-ribosylated by Clostridium botulinum exoenzyme C3 and affects actin microfilament in Vero cells. EMBO J 8:1087–1092

    Google Scholar 

  • Coburn J, Dillon ST, Iglewski BH, Gill DM (1989a) Exoenzyme S of Pseudomonas aeruginosa ADP-ribosylates the intermediate filament protein vimentin. Infect Immun 57:996–998

    CAS  PubMed  Google Scholar 

  • Coburn J, Wyatt RT, Iglewsky BH, Gill DM (1989b) Several GTP-binding proteins, including p21c-H-ras, are perferred substrates of Pseudomonas aeruginosa exoenzyme S. J Biol Chem 264:9004–9008

    CAS  PubMed  Google Scholar 

  • Collier RJ (1982) Structure and activity of diphtheria toxin. In: Hayaishi O, Ueda K (eds) ADP ribosylation reactions. Academic press, New York, pp 575–592

    Google Scholar 

  • Cooper JM (1987) Effects of cytochalasin and phalloidin on actin. J Cell Biol 105:1473–1478

    Google Scholar 

  • Didsbury J, Weber RF, Bokoch GM, Evans T, Snyderman R (1989) rac, a novel ras-related family of proteins that are botulinum toxin substrates. J Biol Chem 264:16378–16382

    Google Scholar 

  • Eklund MW, Poysky FT, Reed SM, Smith CA (1971) Bacteriophage and the toxigenicity of Clostridium botulinum type C. Science 172:480–482

    Google Scholar 

  • Fuji N, Oguma K, Yokosawa N, Kimura K, Tsuzuki K (1988) Characterization of bacteriophage nucleic acids obtained from Clostridium botulinum types C and D. Appl Environ Microbiol 54:69–73

    Google Scholar 

  • Garrett MD, Self AJ, v.Oers C, Hall A (1989) Identification of distinct cytoplasmic targets for ras R-ras and rho regulatory proteins. J Biol Chem 264:10–13

    Google Scholar 

  • Geipel U, Just I, Schering B, Haas D, Aktories K (1989) ADP-ribosylation of actin causes increase in the rate of ATP exchange and inhibition of ATP-hydrolysis. Eur J Biochem 179:229–232

    Google Scholar 

  • Geipel U, Just I, Aktories K (1990) Inhibition of cytochalasin D-stimulated G-actin ATPase by ADP-ribosylation with Clostridium perfringens iota toxin. Biochem J 266:335–339

    Google Scholar 

  • Gill DM (1982) Cholera toxin-catalyzed ADP-ribosylation of membrane proteins. In: Hayaishi O, Ueda K (eds) ADP-ribosylation reactions. Academic press, New York, pp 593–645

    Google Scholar 

  • Gill DM, Richardson SH (1980) Adenosine diphosphate — ribosylation of adenylate catalyzed by heat — labile enterotoxin of Escherichia coli: comparison with cholera toxin. J Infect Dis 141:64–70

    Google Scholar 

  • Gill DM, Evans DJ Jr, Evans DG (1976) Mechanism of activation of adenylate cyclase in vitro by polymyxin-released, heat-labile enterotoxin of Escherichia coli. J Infect Dis 133 [Suppl 1]:S103-S107

    Google Scholar 

  • Habermann E, Dreyer F (1986) Clostridial neurotoxins: handling and action at the cellular and molecular level. Curr Top Microbiol Immunol 129:93–179

    Google Scholar 

  • Hsia JA, Tsai S-C, Adamik R, Yost DA, Hewlett EL, Moss J (1985) Amino acid-specific ADP-ribosylation. J Biol Chem 260:16187–16191

    Google Scholar 

  • Haubruck H, Disela C, Wagner P, Gallwitz D (1987) The ras-related ypt protein is an ubiquitous eukaryotic protein: isolation and sequence analysis of mouse cDNA clones highly homologous to the yeast YPTI gene. Embo J 6:4049–4053

    Google Scholar 

  • Honjo T, Nishizuka Y, Hayaishi O, Kato I (1968) Diphtheria-toxin-dependent-adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis. J Biol Chem 243:2553–3555

    Google Scholar 

  • Iglewski BH, Kabat D (1975) NAD-dependent inhibition of protein synthesis by Pseudomonas aeruginosa toxin. Proc Natl Acad Sci USA 72:2284–2289

    Google Scholar 

  • Jacquemin C, Thibout H, Lambert B, Correze C (1986) Endogenous ADP-ribosylation of Gs subunit and autonomous regulation and adenylate cyclase. Nature 323:182–184

    Google Scholar 

  • Just I, Geipel U, Aktories K (1989) ADP-ribosylation of actin by clostridial toxins. Reversible inhibition of actin ATPase. Naunyn Schmiedeberg's Arch Pharmacol [Suppl II] 340:R76

    Google Scholar 

  • Kikuchi A, Yamamoto K, Fujita T, Takai Y (1988) ADP-ribosylation of the bovine brain rho protein by botulinum toxin type C1. J Biol Chem 263:16303–16308

    Google Scholar 

  • Korn ED (1982) Actin polymerization and its regulation by proteins from nonmuscle cells. Physiol Rev 62:672–737

    Google Scholar 

  • Korn ED, Carlier MF, Pantaloni D (1987) Actin polymerization and ATP hydrolysis. Science 238:638–644

    Google Scholar 

  • Lee H, Iglewski WJ (1984) Cellular ADP-ribosylation with the same mechanism of action as diphtheria toxin and Pseudomonas toxin A. Proc Natl Acad Sci USA 81:2703–2707

    Google Scholar 

  • Leppla SH (1982) Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations in eukaryotic cells. Proc Natl Acad Sci USA 79:3162–3166

    CAS  PubMed  Google Scholar 

  • Madaule P, Axel R (1985) A novel ras-related gene family. Cell 41:31–40

    Google Scholar 

  • Madaule P, Axel R, Myers AM (1987) Characterization of two members of the rho gene family from the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 84:779–783

    Google Scholar 

  • Maller JL, Krebs EG (1977) Progesterone-stimulated meiotic cell division in Xenopus oocytes. J Biol Chem 252:1712–1718

    Google Scholar 

  • Matter K, Dreyer F, Aktories K (1989) Actin involvement in exocytosis from PC12 cells: studies on the influence of botulinum C2 toxin on stimulated noradrenaline release. J Neurochem 52:370–376

    Google Scholar 

  • Mauss S, Koch G, Kreye VAW, Aktories K (1989) Inhibition of the contraction of the isolated longitudinal muscle of the guinea-pig ileum by botulinum C2 toxin: evidence for a role of G/ F-actin transition in smooth muscle contraction. Naunyn Schmiedeberg's Arch Pharmacol 340:345–351

    Google Scholar 

  • Mauss S, Chaponnier C, Gabbiani G (1990) ADP-ribosylation of actin isoforms by botulinum C2 toxin and perfringens iota toxin. Naunyn Schmiedeberg's Arch Pharmacol [Suppl] 431:R33

    Google Scholar 

  • Mayer T, Koch R, Fanick W, Hilz H (1988) ADP-ribosyl proteins formed by pertussis toxin are specifically cleaved by mercury ions. Biol Chem Hoppe Seyler 369:579–583

    Google Scholar 

  • McCormick F (1989) Gasp: not just another oncogene. Nature 340:678–679

    Google Scholar 

  • Narumiya S, Sekine A, Fujiwara M (1988) Substrate for botulinum ADP-ribosyltransferase, Gb, has an amino acid sequence homologous to a putative rho gene product. J Biol Chem 263:17255–17257

    Google Scholar 

  • Noda M, Kato I, Matsuda F, Hirayama T (1981) Mode of action of staphylococcal leukocidin: relationship between binding of 125I-labeled S and F components of leukocidin to rabbit polymorphnuclear leukocytes and leukocidin activity. Infect Immun 34:362–367

    Google Scholar 

  • Norgauer J, Kownatzki E, Seifert R, Aktories K (1988) Botulinum C2 toxin ADP-ribosylates actin and enhances O2-production and secretion but inhibits migration of activated human neutrophils. J Clin Invest 82:1376–1382

    Google Scholar 

  • Norgauer J, Just I, Aktories K, Sklar LA (1989) Influence of botulinum C2 toxin on F-actin and N-formyl peptide receptor dynamics in human neutrophils. J Cell Biol 109:1133–1140

    Google Scholar 

  • Ohishi I (1983a) Response of mouse intestinal loop to botulinum C2 toxin: enterotoxic activity induced by cooperation of nonlinked protein components. Infect Immun 40:691–695

    Google Scholar 

  • Ohishi I (1983b) lethal and vascular permeability activities of botulinum C2 toxin induced by separate injection of the two toxin components. Infect Immun 40:336–339

    Google Scholar 

  • Ohishi I (1987) Activation of botulinum C2 toxin by trypsin. Infect Immun 55:1461–1465

    CAS  PubMed  Google Scholar 

  • Ohishi I, Odagiri Y (1984) Histopathological effect of botulinum C2 toxin on mouse intestines. Infect Immun 43:54–58

    CAS  PubMed  Google Scholar 

  • Ohishi I, Iwasaki M, Sakaguchi G (1980) Purification and characterization of two components of botulinum C2 toxin. Infect Immun 30:668–673

    CAS  PubMed  Google Scholar 

  • Ohishi I, Miyake M, Ogura K, Nakamura S (1984) Cytopathic effect of botulinum C2 toxin on tissue — culture cell lines. FEMS Microbiol Lett 23:281–284

    Google Scholar 

  • Pai EF, Kabsch W, Krengel U, Holmes KC, John J, Wittinghofer A (1989) Structure of the guanine nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation. Nature 341:209–214

    Google Scholar 

  • Paterson HF, Self AJ, Garrett MD, Just I, Aktories K, Hall A (1990) Microinjection of recombinant p21-rho induces rapid changes in cell morphology. J Cell Biol (in press)

  • Pfeuffer T, Helmreich EJM (1988) Structural and functional relationship of guanosine triphosphate binding proteins. Curr Top Cell Regul 29:129–216

    Google Scholar 

  • Pizon V, Chardin P, Lerosey I, Olofson B, Tavitian A (1988) Human cDNAs rap 1 and rap 2 homologous to the Drosophila gene Dras3 encode proteins closely related to ras in the “effector” region. Oncogene 3:201–204

    Google Scholar 

  • Pollard T, Cooper JA (1986) Actin and actin-binding proteins. A critical evaluation of mechanism and functions. Annu Rev Biochem 55:987–1035

    Google Scholar 

  • Popoff MR, Boquet P (1988) Clostridium spiroforme toxin is a binary toxin which ADP-ribosylates cellular actin. Biochem Biophys Res Commun 152:1361–1368

    Google Scholar 

  • Popoff MR, Rubin EJ, Gill DM, Boquet P (1988) Actin-specific ADP-ribosyltransferase produced by a Clostridium difficile strain. Infect Immun 56:2299–2306

    CAS  PubMed  Google Scholar 

  • Reddy E, Reynolds R, Santos E, Barbacid (1982) A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 300:149–152

    Google Scholar 

  • Reuner KH, Presek P, Boschek CB, Aktories K (1987) Botulinum C2 toxin ADP-ribosylates actin and disorganizes the microfilament network in intact cells. Eur J Cell Biol 43:134–140

    Google Scholar 

  • Rösener S, Chhatwal GS, Aktories K (1987) Botulinum ADP-ribosyltransferase C3 but not botulinum neurotoxins C1 and D ADP-ribosylates low molecular mass GTP-binding proteins. FEBS Lett 224:38–42

    Google Scholar 

  • Rubin EJ, Gill DM, Boquet P, Popoff MR (1988) Functional modification of a 21-kilodalton G protein when ADP-ribosylated by exoenzyme C3 of Clostridium botulinum. Mol Cell Biol 8:418–426

    CAS  PubMed  Google Scholar 

  • Schering B, Bärmann M, Chhatwal GS, Geipel U, Aktories K (1988) ADP-ribosylation of skeletal muscle and non-muscle actin by Clostridium perfringens iota toxin. Eur J Biochem 171:225–229

    Google Scholar 

  • Sekine A, Fujiwara M, Narumiya S (1989) Asparagine residue in the rho gene product is the modification site for botulinum ADP-ribosyltransferase. J Biol Chem 264:8602–8605

    CAS  PubMed  Google Scholar 

  • Simpson LL (1984) Molecular basis for the pharmacological actions of Clostridium Botulinum type C2 toxin. J Pharmacol Exp Ther 230:665–669

    CAS  PubMed  Google Scholar 

  • Simpson LL (1989) The binary toxin produced by Clostridium botulinum enters cells by receptor-mediated endocytosis to exert its pharmacologic effects. J Pharmacol Exp Ther 251:1223–1228

    CAS  PubMed  Google Scholar 

  • Simpson LL, Stiles BG, Zepeda HH, Wilkins TD (1987) Molecular basis for the pathological actions of Clostridium perfringens Iota toxin. Infect Immun 55:118–122

    Google Scholar 

  • Simpson LL, Stiles BG, Zepeda H, Wilkins TD (1989) Production by Clostridium spiroforme of an iotalike toxin that possesses mono(ADP-ribosyl)transferase activity: identification of a novel class of ADP-ribosyltransferases. Infect Immun 57:255–261

    Google Scholar 

  • Stiles BG, Wilkins TD (1986) Purification and characterization of Clostridium perfringens iota toxin: dependence on two nonlinked proteins for biological activity. Infect Immun 54:6783–688

    Google Scholar 

  • Stryer L, Bourne LR (1986) G proteins: a family of signal transducers. Annu Rev Cell Biol 2:391–419

    Google Scholar 

  • Tamura M, Nogimuri K, Murai S, Yajima M, Ito K, Katada T, Ui M, Ishii S (1982) Subunit structure of islet-activating protein, pertussis toxin, in conformity with the A-B model. Biochemistry 21:5516–5522

    Google Scholar 

  • Tanuma S, Kawashima K, Endo N (1988) Eukaryotic mono(ADP-ribosyl)transferase that ADPribosylates GTP-binding regulatory G1 protein. J Biol Chem 263:5485–5489

    Google Scholar 

  • Touchot N, Chardin P, Tavitian A (1987) Four additional members of the ras gene superfamily isolated by an oligonucleotide strategy: molecular cloning of YPT-related cDNAs from a rat brain library. Proc Natl Acad Sci USA 84:8210–8214

    Google Scholar 

  • Trahey M, McCormick F (1987) A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science 238:542–545

    Google Scholar 

  • Tsai SC, Adamik R, Kanaho Y, Hewlett EL, Moss J (1984) Effects of guanyl nucleotides and rhodopsin on ADP-ribosylation of the inhibitory GTP-binding component of adenylate cyclase by pertussis toxin. J Biol Chem 259:15320–15323

    Google Scholar 

  • Ui M (1984) Islet-activating protein, pertussis toxin: a probe for functions of the inhibitory guanine nucleotide regulatory component of adenylate cyclase. Trends Pharmacol Sci 5:277–279

    Google Scholar 

  • Vandekerckhove J, Weber K (1979) The complete amino acid sequence of actins from bovine aorta, bovine heart, bovine fast skeletal muscle and rabbit slow skeletal muscle. Differentiation 14:123–133

    Google Scholar 

  • Vandekerckhove J, Schering B, Bärmann M, Aktories K (1987) Clostridium-perfringens iota toxin ADP-ribosylates skeletal muscle actin in Arg-177. FEBS Lett 225:48–52

    Google Scholar 

  • Vandekerckhove J, Schering B, Bärmann M, Aktories K (1988) Botulinum C2 toxin ADP-ribosylates cytoplasmic β/γ-actin in arginine 177. J Biol Chem 263:696–700

    Google Scholar 

  • Wegner A (1976) Head tail polymerization of actin. J Mol Biol 108:139–150

    Google Scholar 

  • Wegner A, Aktories K (1988) ADP-ribosylated actin caps the barbed ends of actin filaments. J Biol Chem 263:13739–13742

    Google Scholar 

  • Weigt C, Just I, Wegner A, Aktories K (1989) Nonmuscle actin ADP-ribosylated by botulinum C2 toxin caps actin filaments. FEES Lett 246:181–184

    Google Scholar 

  • Wieland T, Ulibarri I, Aktories K, Gierschik P, Jakobs KH (1990) Interaction of small G proteins with photoexcited rhodopsin. FEBS Lett (in press)

  • Yeramian P, Chardin P, Madaule P, Tavitian A (1987) Nucleotide sequence of human rho cDNA clone 12. Nucleic Acids Res 15:1869

    Google Scholar 

  • Zepeda H, Considine RV, Smith HL, Sherwin JA, Ohishi I, Simpson LL (1988) Actions of the Clostridium botulinum binary toxin on the structure and function of Y-1 adrenal cells. J Pharmacol Exp Ther 246:1183–1189

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aktories, K. Clostridial ADP-ribosyltransferases — Modification of low molecular weight GTP-binding proteins and of actin by clostridial toxins. Med Microbiol Immunol 179, 123–136 (1990). https://doi.org/10.1007/BF00202390

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00202390

Keywords

Navigation