Skip to main content
Log in

Differential molecular responses to abscisic acid and osmotic stress in viviparous maize embryos

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Substantial quantities of mRNA encoding the abundant “Em” polypeptide accumulate, in planta, in developing embryos of maize (Zea mays L.). By contrast, accumulation of “Em” mRNA is only barely detectable in embryos with the vp-5/vp-5 genotype [an abscisic acid (ABA)-deficient viviparous phenotype]. “Em” mRNA is not detectable within viviparous embryos of the vp-1/vp-1 genotype that are non-responsive to ABA. Culture of immature wild-type and vp-5/vp-5 embryos in the presence of exogenous ABA or of an osmotically active agent prevents precocious germination and results in expression of the “Em” genes. When vp-1/vp-1 embryos are cultured under similar conditions, only the application of osmotic stress prevents precocious germination. However, “Em” mRNA does not accumulate either in ABA-treated or stressed, arrested embryos, indicating a requirement for ABA perception through a VP-1-mediated mechanism for “Em” gene expression. Nevertheless, vp-1/vp-1 embryos do show both ABA and stress responses at the molecular level. Treatment with ABA causes the accumulation of mRNA encoding a polypeptide of approx. 30 kDa, whilst osmotic stress induces the accumulation both of a 30-kDa polypeptide and a set of approx. 20-kDa polypeptides. This indicates the existence of discrete, parallel ABA and stress response pathways in developing maize embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

cDNA:

copy-DNA

DAP:

days after pollination

kDa:

kilodaltons

MS:

Murashige and Skoog medium

LEA:

late embryogenesis abundant

NEpHGE:

non-equilibrium pH gradient gel electrophoresis

SDS-PAGE:

sodium dodecyl sulphate-polyacrylamide gel electrophoresis

References

  • Black, M. (1983) Abscisic acid in seed germination and dormancy. In: Abscisic acid, pp. 331–363, Addicott, F.T., ed. Praeger, N.Y.

    Google Scholar 

  • Bonner, W.M., Laskey, R.A. (1974) A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur. J. Biochem. 46, 83–88

    Google Scholar 

  • Close, T.J., Kortt, A.A., Chandler, P.M. (1989) A cDNA-based comparison of dehydration-induced proteins (dehydrins) in barley and corn. Plant Mol. Biol. 13, 95–108

    Google Scholar 

  • Cuming, A.C., Bennett, J. (1981) Biosynthesis of the light-harvesting chlorophyll a/b protein: control of messenger RNA activity by light. Eur. J. Biochem. 118, 71–80

    Google Scholar 

  • Davis, L.G., Dibner, M.D., Batty, J.F. eds. (1986) Basic methods in molecular biology, pp 143–146, Elsevier Science Publishers, New York

    Google Scholar 

  • Devos, K.M., Atkinson, C.N., Chinoy, C.N., Guiltinan, M.J., Quatrano, R.S., Gale, M.D. (1991) Chromosomal location and variability in wheat, barley and rye of a wheat gene encoding a bZip protein (EmBP-1) Theor. Appl. Genet. 82, 665–667

    Google Scholar 

  • Dooner, H.K. (1982) Gene-enzyme relationships in anthocyanin biosynthesis in maize. In: Maize for biological research, pp 123–128, Sheridan W. F., ed., Plant Molecular Biology Association

  • Dure, L., Crouch, M.L., Harada, J., Ho, T.H.D., Mundy, J., Quatrano, R.S., Thomas, T., Sung, Z.R. (1989) Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol. Biol. 12, 475–486

    Google Scholar 

  • Eyster, W.H. (1931) Vivipary in maize. Genetics 16, 574–590

    Google Scholar 

  • Feinberg, A.P., Vogelstein, B. (1983) A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132, 6–13

    Google Scholar 

  • Galau, G.A., Bijaisoradat, N., Hughes, D.W. (1987) Accumulation kinetics of cotton Late-Embryogenesis-Abundant mRNAs and storage protein mRNAs: coordinate regulation during embryogenesis, and the role of abscisic acid. Dev. Biol. 123, 198–212

    Google Scholar 

  • Guiltinan, M.J., Marcotte, W.R., Quatrano, R.S. (1990) A plant leucine zipper protein that recognises an abscisic acid response element. Science 250, 267–271

    Google Scholar 

  • Gurr, S.J., McPherson, M.J., Scollan, C., Atkinson, H.J., Bowles, D. (1991) Gene expression in nematode-infected plant roots. Mol. Gen. Genet. 226, 361–366

    Google Scholar 

  • Hattori, T., Vasil, V., Rosenkrans, L., Hannah, L.C., McCarty, D.R., Vasil, I.K. (1992) The Viviparous-1 gene and abscisic acid activate the C1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize. Genes Devel. 6, 609–618

    Google Scholar 

  • Jacobsen, J.V., Shaw, D.C. (1989) Heat-stable proteins and abscisic acid action in barley aleurone cells. Plant Physiol. 91, 1520–1526

    Google Scholar 

  • Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature New Biol. 227, 680–685

    Google Scholar 

  • Manglesdorf, P.C. (1930) The inheritance of dormancy and premature germination in maize. Genetics 15, 462–494

    Google Scholar 

  • Marcotte, W.R. Jr., Russell, S.H., Quatrano, R.S. (1989) Abscisic acid responsive sequences from the Em gene of wheat. Plant Cell. 1, 969–976

    Google Scholar 

  • McCarty, D.R., Carson, C.B., Stinard, P.S., Robertson, D.S. (1989) Molecular analysis of viviparous-1: an abscisic acid insensitive mutant of maize. Plant Cell. 1, 523–532

    Google Scholar 

  • McDaniel, S., Smith, J.D., Price, H.J. (1977) Response of viviparous mutants to abscisic acid in embryo culture. Maize Gen. Coop. Newslett. 51, 85–86

    Google Scholar 

  • Morris, P.C., Kumar, A., Bowles, D.J., Cuming, A.C. (1990) Osmotic stress and abscisic acid regulate expression of the wheat Em genes. Eur. J. Biochem. 190, 625–630

    Google Scholar 

  • Mundy, J., Chua, N.H. (1988) Abscisic acid and water-stress induce the expression of a novel rice gene. EMBO J. 7, 2279–2286

    Google Scholar 

  • Mundy, J., Yamaguchi-Shinozaki, K., Chua, N-H. (1990) Nuclear proteins bind conserved elements in the abscisic acid responsive promoter of a rice rab gene. Proc. Natl. Acad. Sci. USA 87, 1406–1410

    Google Scholar 

  • Murashige, T., Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–497

    Google Scholar 

  • Neill, S.J., Horgan, R., Parry, A.D. (1986) The carotenoid and abscisic acid content of viviparous kernels and seedlings of Zea mays L. Planta 169, 87–96

    Google Scholar 

  • Neill, S.J., Horgan, R., Rees, A.F. (1987) Seed development and vivipary in Zea mays L. Planta 171, 358–364

    Google Scholar 

  • O'Farrell, P.Z., Goodman, H.M., O'Farrell, P.H. (1977) High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell. 12, 1133–1142

    Google Scholar 

  • Piatkowski, D., Schneider, K., Salamini, F., Bartels, D. (1990) Characterisation of five abscisic acid-responsive cDNA clones isolated from the dessication-tolerant plant Craterostigma plantagineum and their relationship to other water-stress genes. Plant Physiol. 94, 1682–1688

    Google Scholar 

  • Pla, M., Gómez, J., Goday, A., Pagès, M. (1991) Regulation of the abscisic acid responsive gene rab28 in maize viviparous mutants. Mol. Gen. Genet. 230, 394–400

    Google Scholar 

  • Quatrano, R.S. (1986) Regulation of gene expression by abscisic acid during angiosperm embryo development. In: Oxford surveys of plant molecular and cell biology, pp. 467–477, Miflin, B.J., ed., Oxford University Press, UK

    Google Scholar 

  • Robertson, D.S. (1955) The genetics of vivipary in maize. Genetics 40, 745–760

    Google Scholar 

  • Robertson, D.S., Anderson, I.C., Bachmann, M.D. (1978) Pigment-deficient mutants: genetic, biochemical, and developmental studies. In: Maize breeding and genetics, pp. 461–494, Walden, D.B., ed., John Wiley and Sons, New York

    Google Scholar 

  • Robichaud, C., Sussex, I.M. (1987) The uptake and metabolism of [2-14C]ABA by excised wild type and viviparous-1 embryos of Zea mays L. J. Plant Physiol. 130, 181–188

    Google Scholar 

  • Sanchez-Martinez, D., Puigdomenech, P., Pages, M. (1986) Regulation of gene expression in developing Zea mays embryos. Protein synthesis during embryogenesis and early germination of maize. Plant Physiol. 82, 543–549

    Google Scholar 

  • Smith, J.D., McDaniel, S., Lively, S. (1978) Regulation of embryo growth by abscisic acid in vitro. Maize Gen. Coop. Newslett. 52, 107–108

    Google Scholar 

  • Thomann, E.B., Sollinger, J., White, C., Rivin, C.J. (1992) Accumulation of group 3 late embryogenesis abundant proteins in Zea mays embryos. Plant Physiol. 99, 607–614

    Google Scholar 

  • Vilardell, J., Goday, A., Freire, M.A., Torrent, M., Martinez, M.C., Torné, J.M., Pagés, M. (1990) Gene sequence, developmental expression, and protein phosphorylation of RAB-17 in maize. Plant Mol. Biol. 14, 423–432

    Google Scholar 

  • Vilardell, J., Mundy, J., Stilling, B., Leroux, B., Pla, M., Freyssinet, G., Pagès, M. (1991) Regulation of the maize rab17 promoter in transgenic heterologous systems. Plant Mol. Biol. 17, 985–993

    Google Scholar 

  • Walbot, V. (1978) Control mechanisms for plant embryogeny. In: Dormancy and developmental arrest, pp. 113–166, Clutter, M.E., ed., Academic Press, New York

    Google Scholar 

  • Williamson, D., Quatrano, R.S., Cuming, A.C. (1985) Em polypeptide and its messenger RNA levels are modulated by abscisic acid during embryogenesis in wheat. Eur. J. Biochem. 152, 501–507

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butler, W.M., Cuming, A.C. Differential molecular responses to abscisic acid and osmotic stress in viviparous maize embryos. Planta 189, 47–54 (1993). https://doi.org/10.1007/BF00201342

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00201342

Key words

Navigation