Skip to main content
Log in

Solute-atom segregation at symmetric twist and tilt boundaries in binary metallic alloys on an atomic-scale

  • Published:
Interface Science

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Monte Carlo and overlapping distributions Monte Carlo (ODMC) techniques are employed to simulate grain boundary (GB) segregation in a number of single-phase binary metallic alloys—the Au-Pt, Cu-Ni, Ni-Pd, and Ni-Pt systems. For a series of symmetric [001] twist and [001] tilt boundaries, with coincident site lattice (CSL) structures, we demonstrate that the Gibbsian interfacial excess of solute is a systematic function of the misorientation angle. We also explore in detail whether the GB solid solution behavior is ideal or nonideal by comparing the results of Monte Carlo and ODMC simulations. The range of binding free energies of specific atomic sites at GBs for solute atoms is also studied. The simulational results obtained demonstrate that the thermodynamic and statistical thermodynamic models commonly used to explain GB segregation are too simple to account for the microscopic segregation patterns observed, and that it is extremely difficult. If not impossible, to extract the observed microscopic information employing macroscopic models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Guttmann and D. McLean, in Interfacial Segregation, edited by W.C. Johnson and J.M. Blakely (American Society for Metals. Metals Park, 1970), pp. 261–347.

    Google Scholar 

  2. E.D. Hondros and M.P. Seah, in Physical Metailurgy, edited by R.W. Cahn and Haasen (Elsevier Science Publishers, Amsterdam, 1983), Vol. 1 Chap. 13, p. 856.

    Google Scholar 

  3. C.L. Braint, In Materials Interfaces: Atomic-Level Structure and Properties, edited by D. Wolf and S. Yip (Chapman & Hall, London, 1992), p. 463.

    Google Scholar 

  4. S.M. Foiles and D.N. Seidman, in Materials Interfaces: Atomic-Level Structure and Properties, edited by D. Wolf and S. Yip (Chapman & Hall, London, 1992), p. 497;

    Google Scholar 

  5. D.N. Seidman, in Materials Interfaces: Atomic-Level Structure and Properties. edited by D. Wolf and S. Yip (Chapman & Hall, London, 1992), p. 58;

    Google Scholar 

  6. D.N. Seidman, Mater. Sci. Eng. A137, 57 (1991);

    Google Scholar 

  7. D.N. Seidman, J.G. Hu, S.-M. Kuo, B.W. Krakauer, Y. Oh, and A. Seki, Coll. Phys. (Paris) 51, C1–47 (1990).

    Google Scholar 

  8. R. Kirohheim, in Materials Interfaces: Atomic-Level Structure and Properties, edited by D. Wolf and S. Yip (Chapman & Hall, London, 1992), p. 481.

    Google Scholar 

  9. R. Leicek and S. Hofmann, Crit. Reys. Solid State Phys. 20, 1 (1995).

    Google Scholar 

  10. D. Kalderon, Proc. Inst. Mech. Eng 186, 341 (1972);

    Google Scholar 

  11. S.F. Pugh, An Introduction to Grain Boundary Fracture in Metals (The Institute of Metals, London, 1991);

    Google Scholar 

  12. A.W. Thompson and J.F. Knott, Metall. Trans. A 24, 523 (1993).

    Google Scholar 

  13. J.W. Gibbs, The Collected Works of J. Willard Gibbs (Yale University Press, New Haven, 1948), Vol. 1, pp. 219–252.

    Google Scholar 

  14. J.W. Cahn, J. Phys. (Paris) 43, C6–199 (1982).

    Google Scholar 

  15. W.T. Read and W. Shockley, Phys. Rev. 78, 275 (1980)

    Google Scholar 

  16. C.H.P. Lupis, Chemical Thermodynamics of Materials (North-Holland, New York, 1983), Chap. 14.

    Google Scholar 

  17. B.W. Krakauer and D.N. Seidman, Phys. Rev. B. 48, 6724, (1992).

    Google Scholar 

  18. Grain Boundary Chemistry and Intergranular Fracture, edited by G.S. Was and S.M. Bruemmer. in Mater. Sci. Forum 46 (1989).

  19. A.P. Sutton and R.W. Balluffi, Interfaces in Crystalline Materials (Clarendon Press, Oxford, 1995), pp. 20–21.

    Google Scholar 

  20. R.C. Pond, in Grain-Boundary Structure and Kinetics (Amterican Society for Metals, Metals Park, Ohio, 1980), pp. 13–42.

    Google Scholar 

  21. R.C. Pond, Proc. Roy. Soc. London. Ser. A 357, 463 (1977).

    Google Scholar 

  22. J.D. Rittner, D. Lidler, D.N. Seidman, and Y. Oh, Phys. Rev. Lett. 74, 1115 (1995).

    Google Scholar 

  23. D. McLean, Grain Boundaries in Metals (Clarendon Press, Oxford, 1957).

    Google Scholar 

  24. I. Langmuir, J. Amer. Chem. Soc. 40, 1361 (1918).

    Google Scholar 

  25. M.P. Seah, J. Vac. Sci. Technol. 17, 16 (1975).

    Google Scholar 

  26. M.P. Seah and E.D. Hondres, Proc. Roy. Soc. London A 335, 191 (1973);

    Google Scholar 

  27. S. Brunauer, P.H. Emmett, and E. Teller, J. Amer. Chem. Soc. 60, 309 (1938).

    Google Scholar 

  28. R.H. Fowler and E.A. Guggenheim, Statistical Thermodynamics (Cambridge University Press, Cambridge, 1930).

    Google Scholar 

  29. M. Guttmann, Surface Sci. 53, 213 (1975).

    Google Scholar 

  30. R. Herschitz and D.N. Seidman, Acta Metall. 33, 1565 (1985).

    Google Scholar 

  31. C.L. White and W.A. Coghlan, Metall. Trans. A 8A, 1403 (1978).

    Google Scholar 

  32. C.L. White and D.F. stein, Metall. Trans. A 9A, 13 (1978).

    Google Scholar 

  33. R. Kirohheim, Prog. Mater. Sci. 32 261 (1988).

    Google Scholar 

  34. S. M. Foiles, Phys. Rev. B 32, 7685 (1985).

    Google Scholar 

  35. S.M. Foiles, Phys. Rev. B 40, 11502 (1989).

    Google Scholar 

  36. A. Seki, D.N. Seidman, Y. Oh, and S.M. Foiles, Acta Metall. Mater. 39, 3167, 3179 (1991);

    Google Scholar 

  37. D. Udler and D.N. Seidman, Phys. Stat. Solidi (b) 172, 267 (1992);

    Google Scholar 

  38. D. Udler and D.N. Seidman, Mater. Science Forum 126–128, 169 (1993);

    Google Scholar 

  39. D. Udler and D.N. Seidman, Mater. Science Forum 155–156, 189 (1994);

    Google Scholar 

  40. D. Udler and D.N. Seidman, Acta Metall. Mater. 42, 1959 (1994);

    Google Scholar 

  41. D. Udler and D.N. Seidman, Interface Science 3, 41 (1995);

    Google Scholar 

  42. D. Udler and D.N. Seidman, J. Mater. Res. 10, 1933 (1995).

    Google Scholar 

  43. N. Metropolis, M.N. Rosenbluth, A.W. Rosenbluth, A.H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).

    Google Scholar 

  44. D. Udler and D.N. Seidman, Scripta Metall. Mater. 26, 449 (1992);

    Google Scholar 

  45. D. Udler and D.N. Seidman, Scripta Metall. Mater. 26, 803 (1992).

    Google Scholar 

  46. D. Udler and D.N. Seidman, Phys. Status Solidi (b) 172, 267 (1992).

    Google Scholar 

  47. W. Bollmann, Crystal Defects and Crystalline Interfaces (Springer-Verlag, Berlin, 1970), pp. 143–148;

    Google Scholar 

  48. W. Bollmann, Crystal Lattices, Interfaces, Matrices (Imprimerie des Bergues, Carouge, Geneva, 1982), Chap. 16, pp. 173–187.

    Google Scholar 

  49. J.P. Valleau and G.M. Torrie, in Modern Theoretical Chemistry, edited by B.J. Berne (Plenum, New York, 1976), Vol. 5.

    Google Scholar 

  50. J.D. Rittner, S.M. Foiles, and D.N. Seidman, Phys. Rev. B 50, 12004 (1994);

    Google Scholar 

  51. J.D. Rittner, D. Udler, D.N. Seidman, and Y. Oh, Phys. Rev. Lett. 74, 1115 (1995).

    Google Scholar 

  52. M.S. Daw and M.I. Baskes, Phys. Rev. Lett. 50, 1285 (1983);

    Google Scholar 

  53. M.S. Daw and M.I. Baskes, Phys. Rev. B 29, 6443 (1984).

    Google Scholar 

  54. S.M. Foiles, M.I. Baskes, and M.S. Daw, Phys. Rev. B 33, 7983 (1986).

    Google Scholar 

  55. M.S. Daw, Phys. Rev. B 39, 7441 (1989).

    Google Scholar 

  56. H. Okamoto, and T.B. Massalski, 1985, Bull. Alloy Phase Diagr. 6, 461 (1985).

    Google Scholar 

  57. C.E. Dahmani, M.S. Cadeville, J.M. Sanchez, and J.L. Moran-Lopez, Phys. Rev. Lett. 55, 1208 (1985).

    Google Scholar 

  58. J.D. Rittner, Ph.D. Thesis, Northwestern University (1996); J.D. Rittner and D.N. Seidman, (1996) (submitted for publication).

  59. D. Udler and D.N. Seidman, Phys. Rev. Lett. 77, 3379 (1996).

    Google Scholar 

  60. M. Hashimoto, Y. Ishida, R. Yamamoto, M. Doyama, and T. Fujiwara, Scripta Metall. 16, 267 (1982);

    Google Scholar 

  61. R. Herschitz and D.N. Seidman, Acta Metall. 33, 1547, 1565 (1985);

    Google Scholar 

  62. R. Herschitz, D.N. Seidman and A. Brokman, J. Phys. (Paris) 46, C4–451 (1985);

    Google Scholar 

  63. K.E. Sickafuss and S.L. Sass, Acta Metall. 35, 69 (1987);

    Google Scholar 

  64. C.H. Lin and S.L. Sass, Scripta Metall. 22, 735, 1569 (1988);

    Google Scholar 

  65. J.R. Michael, C.H. Lin, and D.N. Seidman, Scripta Metall. 22, 1121 (1988);

    Google Scholar 

  66. D.E. Luzzi, Phil. Mag. Lett. 63, 281 (1991);

    Google Scholar 

  67. D.E. Luzzi, M. Yan, M. Sob, and V. Vitek, Phys. Rev. Lett. 67, 1894 (1991);

    Google Scholar 

  68. A. Charai and J. L. Rouvière, Mat. Res. Soc. Symp. Proc. 319, 417 (1994).

    Google Scholar 

  69. M. Menyhard, M. Yan, and V. Vitek, Acta Metall. Mater. 42, 2783 (1994).

    Google Scholar 

  70. P.D. Bristowe and A.J. Crocker Philos. Mag. A 38, 487 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rittner, J.D., Udler, D. & Seidman, D.N. Solute-atom segregation at symmetric twist and tilt boundaries in binary metallic alloys on an atomic-scale. Interface Sci 4, 65–80 (1997). https://doi.org/10.1007/BF00200839

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00200839

Keywords

Navigation