Skip to main content
Log in

Selective impairment of visual motion interpretation following lesions of the right occipito-parietal area in humans

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

A group of eighteen patients selected on the basis of the anatomical locus of the lesion, normal visual acuity and the ability to discriminate visual motion, were assessed on the perception of Julesz Random-Dot stereograms and on three tasks of visual motion interpretation: Speed Discrimination, 3D-Structure-from-Motion and 2D-Form-from-motion. The results on these experimental tasks demonstrate a double dissociation of deficits on the visual analysis of motion and stereopsis in the patients with lesions to the posterior right hemisphere. The right occipital-parietal (ROP) group failed on the Stereopsis task and showed a dramatic impairment on the Speed Comparison and on the Structure-from-Motion experiments. They performed in the normal range, however, on the 2D-Form-from-Motion task. The right occipital-temporal (ROT) group, on the other hand, were severely impaired on the identification of two dimensional forms from motion or stereopsis. In both cases, however, they were able to obtain a coarse segregation of the figure from the background. The ROT group did not present significant deficits on the Speed Discrimination and the Structure-from-Motion tasks. The results are discussed in the light of recent physiological and psychophysical findings, and it is hypothesized that, in the human brain, visual deficits ofmotion interpretation and ofstereopsis are associated with right occipital-parietal lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelson EH, Movshon JA (1982) Phenomenal coherence of moving visual patterns. Nature 300:523–525

    Google Scholar 

  • Albright TD (1984) Direction and orientation selectivity of neurons in visual area MT of the macaque. J Neurophysiol 52:1106–1130

    Google Scholar 

  • Allman J (1988) The search for MT in the human visual cortex. European Brain and Behavioural Society Workshop “Visual Processing of form and motion”, Tübingen

  • Bajandas FJ, Kline LB (1987) Neuro-ophthalmology review manual, 2nd edn. Slack, New Jersey

    Google Scholar 

  • Benton AL, Hécaen H (1970) Stereoscopic vision in patients with unilateral cerebral diseases. Neurology 20:1084–1088

    Google Scholar 

  • Braddick OJ (1974) A short-range process in apparent motion. Vision Res 14:519–527

    Google Scholar 

  • Braddick OJ (1980) Low-level and high-level processes in apparent motion. Philos Trans R Soc London Ser B 290:137–151

    Google Scholar 

  • Braunstein ML, Andersen GJ (1984) A counterexample to the rigidity assumptions in the perception of structure from motion. Percept Psychophys 29:145–155

    Google Scholar 

  • Dubner R, Zeki SM (1971) Response properties and receptive fields of cells in an anatomical defined region of the superior temporal sulcus. Brain Res 35:528–532

    Google Scholar 

  • Goldstein K, Gelb A (1918) Psychologische Analysen hirnpathologischer Fälle auf Grund von Untersuchungen Hirnverletzter. I. Abhandlung. Zur Psychologie des optischen Wahrnehmens und Erkennungsvorganges. Neurol Psychiatr 41:1–142

    Google Scholar 

  • Hildreth EC, Koch C (1987) The analysis of visual motion: from computational theory to neuronal mechanisms. Ann Rev Neurosci 10:477–533

    Google Scholar 

  • Hildreth EC, Koch C (1986) The analysis of visual motion: from computational theory to neuronal mechanisms. Massachusetts Institute of Technology, A.I. Memo. 919

  • Jochumson C, Lubar D, Pelczarski M (1983) The graphics magician. Penguin Software

  • Julesz B (1971) Foundations of cyclopean perception. University of Chicago Press, Chicago

    Google Scholar 

  • Koffka K (1935) Principles of gestalt psychology. Harcourt, Brace & World, New York

    Google Scholar 

  • Kretchmann HJ, Weinrich W (1986) Neuroanatomy and cranial computed tomography. Thieme, Stuttgart New York

    Google Scholar 

  • Marr D (1982) Vision. Freeman, San Francisco

    Google Scholar 

  • Marr D, Poggio T (1979) A computational theory of human stereo vision. Proc R Soc London B 204:301–328

    Google Scholar 

  • Marr D, Ullman S (1981) Directional selectivity and its use in early visual processing. Proc R Soc London B 211:151–180

    Google Scholar 

  • Maunsell JHR (1987) Phisiological evidence for two visual systems. In: Vaina LM (ed) Matters of intelligence. Reidel, Dordrecht, pp 59–89

    Google Scholar 

  • Maunsell JHR, Newsome WT (1987) Visual processing in monkeys extrastriate cortex. Ann Rev Neurosci 10:363–401

    Google Scholar 

  • Maunsell JHR, Van Essen DC (1983) Functional properties of neurons in the middle temporal visual area (MT) of the macaque monkey: II Binocular interaction and sensitivity to binocular disparity. J Neurophysiol 49:1148–1167

    Google Scholar 

  • McKee SP (1981) A local mechanism for differential velocity detection. Vision Res 21:491–500

    Google Scholar 

  • Miezin FM, Fox PM, Raichle M, Altman J (1987) Localized response to low contrast moving random dot patterns in human visual cortex monitored with positron emission tomography. Soc Neurosci (abstr): 631

  • Nakayama K (1985) Biological motion processing: a review. Vision Res 25:625–660

    Google Scholar 

  • Nielsen KRK, Poggio T (1983) Vertical image registration in human stereopsis. MIT Artif Intell Memo 743

  • Poggio GF, Fischer B (1977) Binocular interaction and depth sensitivity of the striate and prestriate cortical neurons of the behaving resus monkeys. J Neurophysiol 40:1392–1405

    Google Scholar 

  • Polyak S (1957) The vertebrate visual system. The University of Chicago Press, Chicago

    Google Scholar 

  • Potzl O, Redlich E (1911) Demonstration eines Falles von bilateraler Affektion beider Occipitallappen. Wien Klin Wochenschr 24:517–518

    Google Scholar 

  • Prazdny K (1986) Three-dimensional structure from long-range apparent motion. Perception 15:619–625

    Google Scholar 

  • Riddoch G (1917) Dissociation of visual perceptions due to occipital injuries, with especial reference to appreciation of movement. Brain 40:15–57

    Google Scholar 

  • Rodman HR, Albright T (1987) Coding of visual stimulus velocity in area MT of the macaque. Vision Res 27:2035–2048

    Google Scholar 

  • Siegel RM, Andersen RM (1986) Motion perceptual deficits following ibotenic acide lesions of the middle temporal area (MT) in the behaving rhesus monkey. Soc Neurosci (abstr) 12:1183

    Google Scholar 

  • Todd J (1984) The perception of three-dimensional structure from rigid and non-rigid motion. Percept Psychophys 36:97–103

    Google Scholar 

  • Ullman S (1979) The interpretation of visual motion. MIT Press, Cambridge, Mass

    Google Scholar 

  • Ullman S (1983) Computational studies in the interpretation of structure from motion: summary and extension. Massachusetts Institute of Technology A.I. Memo 706

  • Ungerleider LG, Desimone R (1986) Cortical connection of the area MT in the macaque. J Comp Neurol 247:190–222

    Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield (eds) Analysis of visual behavior. MIT Press, Cambridge, Mass, pp 549–586

    Google Scholar 

  • Vaina LM (1987a) Common functional pathways in texture and form vision. Evidence from brain lesions in humans. Proc Second Congress of Neuroscience, Budapest

  • Vaina LM (1987b) Visual texture for recognition. In: Vaina LM (ed) Matters of intelligence. Reidel, Dordrecht, pp 89–115

    Google Scholar 

  • Vaina LM (1988a) Deficits of motion analysis in right occipito-parietal lesions in humans (abstr). Proceedings of the European Brain and Behavioural Science Workshop on “Visual processing of Form and Motion”, Tübingen

  • Vaina LM (1988b) Effects of right parietal lobe lesions on visual motion analysis in humans. Invest Ophthalmol Vis Sci 29:434

    Google Scholar 

  • Vaina LM (1989) “What” and “Where” in the human visual system. Synthese 3-25

  • Vaina LM, Amarilio P, Naili S (1987) A neuropsychological tests battery for visual motion analysis. Boston University — Natural Computation Laboratory and Intelligent Systems Laboratory

  • Vaina LM, LeMay M, Naili S, Amarillio P, Bienfang D, Montgomery C (1988) Deficits of visual motion analysis after posterior right hemisphere lesions. Soc Neurosci (abstr) 14:458

    Google Scholar 

  • Van Essen DC (1985) Functional organization of primate visual cortex. In: Peters A, Jones EG (eds) Cerebral cortex. Plenum Press, New York

    Google Scholar 

  • Wallach H, O'Connell DN (1953) The kinetic depth effect. J Exp Psychol 45:205–217

    Google Scholar 

  • Warrington EK (1988) Visual apperceptive agnosia: a clinico-anatomical study of three cases. Cortex 24:13–32

    Google Scholar 

  • Warrington EK, James M, Maciewski C (1986) The WAIS as a lateralizing and localizing diagnostic instrument: a study of 656 patients with unilateral verebral lesions. Neuropsychologia 24:223–239

    Google Scholar 

  • Zeki SM (1978) Functional specialization in the visual cortex of the rhesus monkey. Nature 274:423–428

    Google Scholar 

  • Zihl D, Von Cramon D, Mai N (1983) Selective disturbance of movement vision after bilateral brain damage. Brain 106:311–340

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaina, L.M. Selective impairment of visual motion interpretation following lesions of the right occipito-parietal area in humans. Biol. Cybern. 61, 347–359 (1989). https://doi.org/10.1007/BF00200800

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00200800

Keywords

Navigation