Skip to main content
Log in

Backbone dynamics of an alamethicin in methanol and aqueous detergent solution determined by heteronuclear 1H−15N NMR spectroscopy

  • Research Papers
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

The 15N relaxation rates of the α-aminoisobutyric acid (Aib)-rich peptide alamethicin dissolved in methanol at 27°C and 5°C, and dissolved in aqueous sodium dodecylsulfate (SDS) at 27°C, were measured using inverse-detected one-and two-dimensional 1H−15N NMR spectroscopy. Measurements of 15N longitudinal (RN(Nz)) and transverse (RN(Nx,y)) relaxation rates and the {1H} 15N nuclear Overhauser enhancement (NOE) at 11.7 Tesla were used to calculate (quasi-) spectral density values at 0, 50, and 450 MHz for the peptide in methanol and in SDS. Spectral density mapping at 0, 50, 450, 500, and 550 MHz was done using additional measurements of the 1H−15N lingitudinal two-spin order, RNH(2H supNinfZ NZ), two-spin antiphase coherence, RNH(2H supZinfN Nx,y), and the proton longitudinal relaxation rate, RH(H supZinfN ), for the peptide dissolved in methanol only. The spectral density of motions was also modeled using the three-parameter Lipari-Szabo function. The overall rotational correlation times were determined to be 1.1, 2.5, and 5.7 ns for alamethicin in methanol at 27°C and 5°C, and in SDS at 27°C, respectively. From the rotational correlation time determined in SDS the number of detergent molecules associated with the peptide was estimated to be about 40. The average order parameter was about 0.7 and the internal correlation times were about 70 ps for the majority of backbone amide 15N sites of alamethicin in methanol and in SDS. The relaxation data, spectral densities, and order parameters suggest that the peptide N-H vectors of alamethicin are not as highly constrained as the ‘core’ regions of folded globular proteins. However, the peptide backbone is clearly not as mobile as the most unconstrained regions of folded proteins, such as those found in the ‘frayed’ C-and N-termini of some proteins, or in randomcoil peptides. The data also suggest significant mobility at both ends of the peptide dissolved in methanol. In SDS the mobility in the middle and at the ends of the peptide is reduced. The implications of the results with respect to the sterically hindered Aib residues and the biological activities of the peptide are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abragam, A. (1961) Principles of Nuclear Magnetism, Clarendon Press, Oxford, U.K.

    Google Scholar 

  • Aleman, C. (1994) Biopolymers, 34, 841–847.

    Google Scholar 

  • Barbato, G., Ikura, M., Kay, L.E., Pastor, R.W. and Bax, A. (1992) Biochemistry, 31, 5269–5278.

    Google Scholar 

  • BarchiJr., J.J., Grasberger, B., Gronenborn, A. and Clore, G.M. (1994) Protein Sci., 3, 15–21.

    Google Scholar 

  • Basu, G., Kitao, A., Hirata, F. and Go, N. (1994) J. Am. Chem. Soc., 116, 6307–6315.

    Google Scholar 

  • Bax, A., Griffey, R.H. and Hawkins, B.L. (1983) J. Magn. Reson., 55, 301–315.

    Google Scholar 

  • Bax, A. and Davis, D.G. (1985) J. Magn. Reson., 65, 355–360.

    Google Scholar 

  • Berglund, H., Kovács, H., Dahlman-Wright, K., Gustafsson, J. and Härd, T. (1992) Biochemistry, 31, 12001–12001.

    Google Scholar 

  • Boyd, J., Hommel, U. and Campbell, I.D. (1990) Chem. Phys. Lett., 175, 477–482.

    Google Scholar 

  • Boyd, J., Hommel, U. and Krishnan, V.V. (1991) Chem. Phys. Lett., 187, 317–324.

    Google Scholar 

  • Burgess, A.W. and Leach, S.J. (1973) Biopolymers, 12, 2599–2605.

    Google Scholar 

  • Cafiso, D.S. (1994) Annu. Rev. Biophys. Biomol. Struct., 23, 141–165.

    Google Scholar 

  • Cantor, C.R. and Schimmel, P.R. (1980) Biophysical Chemistry, Part II: Techniques for the Study of Biological Structure and Function, Freeman, New York, NY, pp. 561–563.

    Google Scholar 

  • Creighton, T.E. (1993) Proteins: Structure and Molecular Properties, Freeman, New York, NY, p. 268.

    Google Scholar 

  • Dellwo, M.J. and Wand, A.J. (1989) J. Am. Chem. Soc., 11, 4571–4578.

    Google Scholar 

  • Degrado, W.F. and Lear, J.D. (1990) Biopolymers, 27, 205–213.

    Google Scholar 

  • Esposito, G., Carver, J.A., Boyd, J. and Campbell, I.D. (1987) Biochemistry, 26, 1043–1050.

    Google Scholar 

  • Farrow, N.A., Munhandiram, R., Singer, A.U., Pascal, S.M., Kay, C.M., Gish, G., Shoelson, S.E., Pawson, T., Forman-Kay, J.D. and Kay, L.E. (1994) Biochemistry, 33, 5984–6003.

    Google Scholar 

  • Farrow, N.A., Zhang, O., Forman-Kay, J.D. and Kay, L.E. (1995a) Biochemistry, 34, 868–878.

    Google Scholar 

  • Farrow, N.A., Zhang, O., Szabo, A., Torchia, D.A. and Kay, L.E. (1995b) J. Biomol. NMR, 6, 153–162.

    Google Scholar 

  • Fox, R.O. and Richards, F.M. (1982) Nature, 300, 325–330.

    Google Scholar 

  • Franklin, J.C., Ellena, J.F., Jayasinghe, S., Kelsh, L.P. and Cafiso, D.S. (1994) Biochemistry, 33, 4036–4045.

    Google Scholar 

  • Fraternalli, F. (1990) Biopolymers, 30, 1083–1099.

    Google Scholar 

  • Goldman, M. (1984) J. Magn. Reson., 60, 437–452.

    Google Scholar 

  • Henry, G.D., Weiner, J.H. and Sykes, B.D. (1986) Biochemistry, 25, 590–598.

    Google Scholar 

  • Hubbard, P.S. (1970) J. Chem. Phys., 52, 563–568.

    Google Scholar 

  • Huntress, W.T. (1968) J. Chem. Phys., 48, 3524–3533.

    Google Scholar 

  • Huston, S.E. and Marshall, G.R. (1994) Biopolymers, 34, 75–90.

    Google Scholar 

  • Ishima, R. and Nagayama, K. (1995a) Biochemistry, 34, 3162–3171.

    Google Scholar 

  • Ishima, R. and Nagayama, K. (1995b) J. Magn. Reson. Ser. B, 108, 73–76.

    Google Scholar 

  • Jarvis, J. and Craik, D.J. (1995) J. Magn. Reson. Ser. B, 107, 95–106.

    Google Scholar 

  • Karle, I. and Balaram, P. (1990) Biochemistry, 29, 6747–6761.

    Google Scholar 

  • Kay, L.E., Torchia, D.A. and Bax, A. (1989) Biochemistry, 28, 8972–8979.

    Google Scholar 

  • Kay, L.E., Nicholson, L.K., Delaglio, F., Bax, A. and Torchia, D.A. (1992) J. Magn. Reson. 97, 359–375.

    Google Scholar 

  • Kelsh, L.P., Ellena, J.F. and Cafiso, D.S. (1992) Biochemistry, 31, 5136–5144.

    Google Scholar 

  • Kördel, J., Skelton, N.J., Akke, M., PalmerIII, A.G. and Chazin, W.J. (1992) Biochemistry, 31, 4856–4866.

    Google Scholar 

  • Kushlan, D.M. and LeMaster, D.M. (1993) J. Am. Chem. Soc., 115, 11026–11027.

    Google Scholar 

  • Lipari, G. and Szabo, A. (1982a) J. Am. Chem. Soc., 104, 4546–4559.

    Google Scholar 

  • Lipari, G. and Szabo, A. (1982b) J. Am. Chem. Soc., 104, 4559–4570.

    Google Scholar 

  • London, R.E. (1989) Methods Enzymol., 176, 358–375.

    Google Scholar 

  • Marion, D. and Wüthrich, K. (1983) Biochem. Biophys. Res. Commun., 113, 967–974.

    Google Scholar 

  • Marshall, G.R., Hodgkin, E.E., Langs, D.A., Smith, G.D., Zabrocki, J. and Leplawy, M.T. (1990) Proc. Natl. Acad. Sci. USA. 87, 487–491.

    Google Scholar 

  • Messerle, B.A., Wider, G., Otting, G., Weber, C. and Wüthrich, K. (1989) J. Magn. Reson., 85, 608–613.

    Google Scholar 

  • Neuhaus, D. and Williamson, M.P. (1989) The Nuclear Overhauser Effect in Structural and Conformational Analysis, p. 463, VCH Publishers, New York, NY.

    Google Scholar 

  • Nicholson, L.K., Kay, L.E., Baldisseri, D.M., Arango, J., Young, P.E., Bax, A. and Torchia, D.A. (1992) Biochemistry, 31, 5253–5263.

    Google Scholar 

  • PalmerIII, A.G., Rance, M. and Wright, P.E. (1991) J. Am. Chem. Soc., 113, 4371–4380.

    Google Scholar 

  • PalmerIII, A.G., Skelton, N.J., Chazin, W.J., Wright, P.E. and Rance, M. (1992) Mol. Phys., 75, 699–711.

    Google Scholar 

  • Paterson, Y., Rumsey, S.M., Benedetti, E., Nemethy, G. and Scheraga, H.A. (1981) J. Am. Chem. Soc., 103, 2947–2955.

    Google Scholar 

  • Peng, J.W. and Wagner, G. (1992a) Biochemistry, 31, 8571–8586.

    Google Scholar 

  • Peng, J.W. and Wagner, G. (1992b) J. Magn. Reson., 98, 308–332.

    Google Scholar 

  • Powers, R., Clore, G.M., Stahl, S.J., Wingfield, P.T. and Gronenborn, A. (1992) Biochemistry, 31, 9150–9157.

    Google Scholar 

  • Redfield, C., Boyd, J., Smith, L.J., Smith, A., Smith, G. and Dobson, C.M. (1992) Biochemistry, 31, 10431–10437.

    Google Scholar 

  • Sansom, M.S.P. (1993) Eur. Biophys. J., 22, 105–124.

    Google Scholar 

  • Scholtz, J.M., Qian, H., York, E.J., Stewart, J.M. and Baldwin, R.L. (1991) Biopolymers, 31, 1463–1470.

    Google Scholar 

  • Shaka, A.J., Barker, P.B. and Freeman, R. (1985) J. Magn. Reson., 64, 547–552.

    Google Scholar 

  • Shalongo, W., Dugald, L. and Stellewagen, E. (1994) J. Am. Chem. Soc., 116, 2500–2507.

    Google Scholar 

  • Shaw, G.L., Davis, B., Keeler, J. and Fersht, A.R. (1995) Biochemistry, 34, 2225–2233.

    Google Scholar 

  • Shon, K. and Opella, S.J. (1989) J. Magn. Reson., 82, 193–197.

    Google Scholar 

  • Slichter, C.P. (1990) Principles of Magnetic Resonance, 3rd ed., Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Stone, M.J., Fairbrother, W.J., PalmerIII, A.G., Reizer, J., SaierJr., M.H. and Wright, P.E. (1992) Biochemistry, 31, 4394–4406.

    Google Scholar 

  • Toniolo, C., Crisma, M., Formaggio, F., Valle, G., Cavicchiono, G., Precigoux, G., Aulory, A. and Kauphais, J. (1993) Biopolymers, 33, 1061–1072.

    Google Scholar 

  • Wagner, G. (1993) Curr. Opin. Struct. Biol., 3, 748–754.

    Google Scholar 

  • Woessner, D.T. (1962) J. Chem. Phys., 37, 647–654.

    Google Scholar 

  • Wolfram, S. (1991) Mathematica: A System for Doing Mathematics by Computer, Addison-Wesley, New York, NY, pp. 703–704.

    Google Scholar 

  • Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York, NY.

    Google Scholar 

  • Yee, A.A. and O'Neil, J.D.J. (1992) Biochemistry, 31, 3135–3143.

    Google Scholar 

  • Yee, A.A., Babiuk, R.P. and O'Neil, J.D.J. (1995) Biopolymers, 36, 781–797.

    Google Scholar 

  • Yee, A.A., Marat, K. and O'Neil, J.D.J. (1996) submitted for publication.

  • Zheng, Z., Czaplicki, J. and Jardetzky, O. (1995) Biochemistry, 34, 5212–5223.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To whom correspondence should be addressed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spyracopoulos, L., Yee, A.A. & O'Neil, J.D.J. Backbone dynamics of an alamethicin in methanol and aqueous detergent solution determined by heteronuclear 1H−15N NMR spectroscopy. J Biomol NMR 7, 283–294 (1996). https://doi.org/10.1007/BF00200430

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00200430

Keywords

Navigation