Skip to main content
Log in

Saccadic motor planning by integrating visual information and pre-information on neural dynamic fields

  • Original Papers
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

A functional model of target selection in the saccadic system is presented, incorporating elements of visual processing, motor planning, and motor control. We address the integration of visual information with pre-information. which is provided by manipulating the probability that a target appears at a certain location. This integration is achieved within a dynamic representation of planned eye movement which is modeled through distributions of activation on a topographic field. Visual input evokes activation, which is also constrained by lateral interaction within the field and by preshaping input representing pre-information. The model describes target selection observable in paradigms in which visual goals are presented at more than one location. Specifically, we model the transition from averaging, where endpoints of first saccades fall between two visual target locations, to decision making, where endpoints of first saccades fall accurately onto one of two simultaneously presented visual targets. We make predictions about how metrical biases of first saccades are induced by pre-information about target locations acquired by learning. When coupled to a motor control stage, activation dynamics on the planning level contribute to stabilizing gaze under fixation conditions. The neurophysiological relevance of our functional model is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amari S (1977) Dynamics of pattern formation in lateral-inhibition type neural fields. Biol Cybern 27: 77–87

    Article  PubMed  Google Scholar 

  2. Amari S (1989) Dynamical stability of formation of cortical maps. In: Arbib MA, Amari S (Eds) Dynamic interaction in neural networks: models and data. Springer, Berlin Heidelberg New York, pp 15–34

    Google Scholar 

  3. Amari S, Arbib MA (1977) Competition and cooperation in neural neuts. In: Metzler J (eds) Systems neuroscience. Academic Press, London, pp 119–165

    Google Scholar 

  4. Chipalkatti R, Arbib MA (1987) The prey localization model: a stability analysis. Biol Cybern 57: 287–299

    Article  PubMed  Google Scholar 

  5. Chipalkatti R, Arbib MA (1988) The cue interaction model of depth perception: a stability analysis. J Math Biol 26: 235–262

    Article  PubMed  Google Scholar 

  6. Coren S, Hoenig P (1972) Effect on non-target stimuli upon length of voluntary saccades. Percept Motor Skills 34: 499–508

    PubMed  Google Scholar 

  7. Dev P (1975) Perception of depth surfaces in random-dot stereograms: a neural model. Int J Man-Machine Studies 7: 511–528

    Google Scholar 

  8. Didday RL (1976) A model of visuomotor mechanisms in the frog optic tectum. Math Biosci 30: 169–180

    Article  Google Scholar 

  9. Droulez J, Berthoz A (1991) A neural network model of sensoritopic maps with predictive short-term memory properties. Proc Natl Acad Sci USA 88: 9653–9657

    PubMed  Google Scholar 

  10. Findlay JM (1980) The visual stimulus for saccadic eye movements in human observers. Perception 9: 7–21

    PubMed  Google Scholar 

  11. Findlay JM (1982) Global visual processing for saccadic eye movements. Vision Res 22: 1033–1045

    Article  PubMed  Google Scholar 

  12. Fischer B, Weber H (1993) Express saccades and visual attention. Behav Brain Sci 16: 553–610

    Google Scholar 

  13. Galletti C, Battaglini PP, Fattori P (1993) Parietal neurons encoding spatial locations in craniotopic coordinates. Exp Brain Res 96: 221–229

    Article  PubMed  Google Scholar 

  14. Gisbergen JAM van, Gielen JAM, Cox H, Bruijns J, Kleine Schaars H (1981) Relation between metrics of saccades and stimulus trajectory in visual target tracking: implications for models of the saccadic system. In: Fuchs AF, Becker W (eds) Progress in oculomotor research. Elsevier, Amsterdam, pp 17–27

    Google Scholar 

  15. Gisbergen JAM van, Opstal AJ van, Tax AAM (1987) Collicular ensemble coding of saccades based on vector summation. Neuroscience 21: 541–555

    Article  PubMed  Google Scholar 

  16. Glimscher PW, Sparks DL (1993a) Representation of averaging saccades in the superior colliculus of the monkey. Exp Brain Res 95:429–435

    Article  PubMed  Google Scholar 

  17. Glimscher PW, Sparks DL (1993b) Effects of low-frequency stimulation of the superior colliculus on spontaneous and visually guided saccades. J Neurophysiol 69: 953–964

    PubMed  Google Scholar 

  18. Goldberg ME, Wurtz RH (1972) Activity of superior colliculus in behaving monkey. I. Visual receptive fields of single neurons. J Neurophysiol 35: 542–596

    Google Scholar 

  19. Hallet PE, Lightstone AD (1976) Saccadic eye movement towards stimuli triggered by prior saccades. Vision Res 16: 99–106

    Article  PubMed  Google Scholar 

  20. He P, Kowler E (1989) The role of location probability in the programming of saccades: implications for the center-of-gravity tendencies. Vision Res 29: 1165–1181

    Article  PubMed  Google Scholar 

  21. House DH (1988) A model of the visual localization of prey by frog and toad. Biol Cybern 58: 173–192

    Article  PubMed  Google Scholar 

  22. Jürgens R, Becker W, Kornhuber HH (1981) Natural and drug-induced variations of velocity and duration of human saccadic eye movements: evidence for a control of the neural pulse generator by local feedback. Biol Cybern 39: 87–96

    Article  PubMed  Google Scholar 

  23. Kopecz K, Engels C, Schöner G (1993) Dynamic field approach to target selection in gaze control. In: Gielen S, Kappen B (eds) ICANN'93. Springer, Berlin Heidelberg New York, pp 96–101

    Google Scholar 

  24. Kowler E (1990) The role of visual and cognitive processes in the control of eye movement. In: Kowler E (eds) Eye movements and their role in visual and cognitive processes. Elsevier, Amsterdam, pp 1–70

    Google Scholar 

  25. Lefèvre P, Galiana HL (1992) Dynamic feedback to the superior colliculus in a neural network model of the gaze control system. Neural Networks 5: 871–890

    Article  Google Scholar 

  26. Mikhailov AS (1990) Foundations of synergetics. I. Distributed active systems. Springer, Berlin Heidelberg New York

    Google Scholar 

  27. Munoz DP, Wurtz RH (1993) Fixation cells in monkey superior colliculus. II. Reversible activation and deactivation. J Neurophysiol 70:576–589

    Google Scholar 

  28. Opstal AJ van, Gisbergen JAM van (1989) A nonlinear model for collicular spatial interactions underlying the metrical properties of electrically elicited saccades. Biol Cybern 60: 171–183

    Article  PubMed  Google Scholar 

  29. Opstal AJ van, Gisbergen JAM van (1990) Role of superior colliculus in saccade averaging. Exp Brain Res 79: 143–149

    PubMed  Google Scholar 

  30. Ottes FP, Gisbergen JAM van, Eggermont JJ (1984) Metrics of saccade responses to visual double stimuli: two different modes. Vison Res 24:1169–1179

    Article  Google Scholar 

  31. Ottes FP, Gisbergen JAM van, Eggermont JJ (1985) Latency dependence of colour-based target vs nontarget discrimination by the saccadic system. Vision Res 25: 849–862

    Article  PubMed  Google Scholar 

  32. Pélisson D, Guitton D, Munoz DP (1989) Compensatory eye and head movements generated by the cat following stimulation-induced perturbations in gaze position. Exp Brain Res 78: 654–658

    Article  PubMed  Google Scholar 

  33. Robinson DA (1975) Oculomotor control signals. In: Lennerstrand G, Bach-y Rita P (eds) Basic mechanisms of ocular motility and their clinical implications. Pergamon Press, Oxford, pp 337–374

    Google Scholar 

  34. Schöner G (1994) From interlimb coordination to trajectory formation: common dynamical principles. In: Swinnen SP, Heuer H, Massion J, Casaer P (eds) Interlimb coordination: neural, dynamical, and cognitive constraints. Academic Press, London, pp 339–368

    Google Scholar 

  35. Schöner G, Kelso JAS (1988) A synergetic theory of environmentally pecified and learned patterns of movement coordination. I. Relative phase dynamics. Biol Cybern 58: 71–80

    Article  PubMed  Google Scholar 

  36. Seelen W von (1968) Informationsverarbeitung in homogenen Netzen von Neuronenmodellen. Kybernetik 5: 133–148

    Article  PubMed  Google Scholar 

  37. Sekuler R, Blake R (1990) Perception, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  38. Steinman RM, Haddad GM, Skavenski AA, Wyman D (1973) Miniature eye movements. Science 181: 810–819

    PubMed  Google Scholar 

  39. Tweed DB, Vilis T (1990) The superior colliculus and spatiotemporal translation in the saccadic system. Neural Networks 3: 75–86

    Article  Google Scholar 

  40. Waitzmann DM, Ma TP, Optican LM, Wurtz RH (1991) Superior colliculus neurons mediate the dynamic characteristics of saccades. J Neurophysiol 66: 1716–1737

    PubMed  Google Scholar 

  41. Westheimer G, Hauske G (1975) Temporal and spatial interference with vernier acuity. Vision Res 15: 1137–1141

    Article  PubMed  Google Scholar 

  42. Wurtz RH, Goldberg ME (Eds) (1989) The neurobiology of saccadic eye movements. Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopecz, K., Schöner, G. Saccadic motor planning by integrating visual information and pre-information on neural dynamic fields. Biol. Cybern. 73, 49–60 (1995). https://doi.org/10.1007/BF00199055

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00199055

Keywords

Navigation