Skip to main content
Log in

Consequences of the interaction of β-lactam antibiotics with penicillin binding proteins from sensitive and resistant Staphylococcus aureus strains

  • Mini Review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Amako K, Umeda A, Murata K (1982) Arrangement of peptidoglycan in the cell wall of Staphylococcus spp. J Bacteriol 150:844–850

    Google Scholar 

  2. Amanuma H, Strominger JL (1984) Trapping of the substrate-derived acylenzyme intermediate of purified penicillin-binding protein 1a of Escherichia coli. J Bacteriol 160:824–825

    Google Scholar 

  3. Archer GL, Pennell EA (1989) Rapid detection of methicillin resistant staphylococci using DNA-probe and dot-blot hybridisation. 29th Interscience Conference on Antimicrobial Agents and Chemotherapy, 17–27. Sept. Houston, Texas. American Society for Microbiology, Washington, D.D. abstr. no. 673

    Google Scholar 

  4. Archer G, Scott J (1991) Conjugative transfer genes in staphylococcal isolates from the United States. Antimicrob Agents Chemother 35:2500–2504

    Google Scholar 

  5. Barnickel G, Naumana D, Bradaczek H, Labischinski H, Giesbrecht P (1983) Computer-aided molecular modelling of the three dimensional structure of bacterial peptidoglycan. In: Hakenbeck R, Höltje JV, Labischinski H (eds) The target of penicillin. Walter de Gruyter Verlag, New York, pp 61–66

    Google Scholar 

  6. Beise F (1991) Zellwandchemische und biologische Konsequenzen der Inaktivierung Penicillin-bindender Proteine bei Staphylococcus aureus. Dissertation, Freie Universität Berlin, Berlin

    Google Scholar 

  7. Beise F, Labischinski H, Giesbrecht P (1988a) Role of the penicillin-binding proteins of Staphylococcus aureus in the induction of bacteriolysis by β-lactam antibiotics. In: Actor P, Daneo-Moore L, Higgins ML, Salton MRJ, Shockman GD (eds) Antibiotic inhibition of bacterial cell surface assembly and function. American Society for Microbiology, Washington D. C., pp 360–366

    Google Scholar 

  8. Beise F, Labischinski H, Giesbrecht P (1988a) Selective inhibition of penicillin-binding proteins and its effects on growth and architecture of Staphylococcus aureus. FEMS Microbiol Lett 55:195–202

    Google Scholar 

  9. Berger-Bächi B (1983) Insertional inactivation of staphylococcal methicillin resistance by Tn551. J Bacteriol 154:479–487

    Google Scholar 

  10. Berger-Bächi B (1992) Methicillinresistenz bei Staphylococcus aureus: genetische Grundlagen und Regulation. Chemother J 1:58–64

    Google Scholar 

  11. Berger-Bächi B, Kohler ML (1983) A nove site on the chromosome of Staphylococcus aureus influencing the level of methicillin resistance: genetic mapping. FEMS Microbiol Lett 20:305–309

    Google Scholar 

  12. Berger-Bächi B, Strässle A, Kayser FH (1986) Characterization of an isogenic set of methicillin-resistant and susceptible mutants of Staphylococcus aureus. Eur J Clin Microbiol 5:697–701

    Google Scholar 

  13. Berger-Bächi B, Strässle A, Kayser FH (1989) Natural methicillin resistance in comparison with that selected by in-vitro drug exposure in Staphylococcus aureus. J Antimicrob Chemother 23:179–188

    Google Scholar 

  14. Berger-Bächi B, Strässle A, Barberis-Maino L, Tesch W, Ryffel C, Kayser FH (1990) femA, a host-mediated transacting factor essential for methicillin resistance in Staphylococcus aureus. In: Novick RP (ed) Molecular biology of the staphylococci. VCH Publishers, New York, pp 509–520

    Google Scholar 

  15. Berger-Bächi B, Strässle A, Gustafson JE, Kayser FH (1992) Mapping and characterization of multiple chromosomal factors involved in methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 36:1367–1373

    Google Scholar 

  16. Bi E, Dai K, Subbarao S, Beall B, Lutkenhaus J (1991) FtsZ and cell division. Res Microbiol 142:249–252

    Google Scholar 

  17. Blumberg PM, Strominger JL (1974) Interaction of penicillin with the bacterial cell: penicillin-binding proteins and penicillin-sensitive enzymes. Bacteriol Rev 38:291–335

    Google Scholar 

  18. Blundell JK, Perkins HR (1981) Effects of β-lactam antibiotics on peptidoglycan synthesis in growing Neisseria gonorrhoeae, including changes in the degree of O-acetylation. J Bacteriol 147:633–641

    Google Scholar 

  19. Blundell JK, Perkins HR (1985) Selectivity for O-acetylated peptidoglycan during endopeptidase action by permeabilized Neisseria gonorrhoeae. FEMS Microbiol Lett 30:67–69

    Google Scholar 

  20. Braun V, Gnirke H, Henning U, Rehn K (1973) Model for the structure of the shapemaintaining layer of the Escherichia coli cell envelope. J Bacteriol 114:1264–1270

    Google Scholar 

  21. Brown DFJ, Reynolds PE (1980) Intrinsic resistance to beta-lactam antibiotics in Staphylococcus aureus. FEBS Lett 122:275–278

    Google Scholar 

  22. Brumfitt W (1959) The mechanism of development of resistance to lysozyme by some Grampositive bacteria and its results. Br J Exp Pathol 40:441

    Google Scholar 

  23. Brumfitt W, Hamilton-Miller J (19879) Methicillin-resistant Staphylococcus aureus. N Engl J Med 4:1188–1196

    Google Scholar 

  24. Burge RE, Adams R, Balyuzi HHM, Reaveley DA (1977) Structure of the peptidoglycan of bacterial cell walls. II. J Mol Biol 117:955–974

    Google Scholar 

  25. Chambers HF (1988) Methicillin-resistant staphylococci. Clin Microbiol Rev 1:173–186

    Google Scholar 

  26. Chambers HF, Miick C (1992) Characterization of penicillin-binding protein 2 of Staphylococcus aureus: deacylation reaction and identification of two penicillin-binding peptides. Antimicrob Agents Chemother 36:656–661

    Google Scholar 

  27. Chambers HF, Sachdeva M (1990) Binding of β-lactam antibiotics to penicillin-binding protein in methicillin-resistant Staphylococcus aureus. J Infect Dis 161:1170–1176

    Google Scholar 

  28. Clarke AJ, Dupont C (1992) O-Acetylated peptidoglycan: its occurrence, pathobiological significance, and biosynthesis. Can J Microbiol 38:85–91

    Google Scholar 

  29. Cohen S, Sweeney HM (1970) Transduction of methicillin resistance in Staphylococcus aureus dependent on an unusual specificity of the recipient strain. J Bacteriol 104:1158–1167

    Google Scholar 

  30. Curtis NAC, Hayes MV (1981) A mutant of Staphylococcus aureus H deficient in penicillinbinding protein 1 is viable. FEMS Microbiol Lett 10:227–229

    Google Scholar 

  31. Curtis NAC, Hayes MV, Wyke AW, Ward BJ (1980) A mutant of Staphylococcus aureus H lacking penicillin-binding protein 4 and transpeptidase activity in vitro. FEMS Microbiol Lett 9:263–266

    Google Scholar 

  32. DeJonge BLM, DeLencastre H, Tomasz A (1991) Suppression of autolysis and cell wall turnover in heterogeneous Tn551 mutants of a methicillin-resistant Staphylococcus aureus strain. J Bacteriol 173:1105–1110

    Google Scholar 

  33. DeJonge BLM, Chang YS, Gage D, Tomasz A (1992) Peptidoglycan composition of a highly methicillin-resistant Staphylococcus aureus strain. J Biol Chem 267:11248–11254

    Google Scholar 

  34. DeJonge BLM, Sidow T, Labischinski H, Berger-Bächi B, Tomasz A: Altered muropeptide composition in Staphylococcus aureus strains with an inactivated femA locus (manuscript in preparation)

  35. DeLencastre H, Figueiredo AMS, Urban C, Rahal K, Tomasz A (1991) Multiple mechanisms of methicillin resistance and improved methods for detection in clinical isolates of Staphylococcus aureus. Antimicrob Agents Chemother 35:632–639

    Google Scholar 

  36. Dupont C, Clarke AJ (1991) Dependence of lysozyme-catalyzed solubilization of Proteus mirabilis peptidoglycan on the extent of O-acetylation. Eur J Biochem 195:763–769

    Google Scholar 

  37. Dupont C, Clarke AJ (1991) In vitro synthesis and O-acetylation of peptidoglycan by permeabilized cells of Proteus mirabilis. J Bacteriol 173:4618–4624

    Google Scholar 

  38. Easmon CSF, Adlam C (1983) Staphylococci and staphylococcal infections, vol 1 clinical and epidemiological aspects. Academic Press, London

    Google Scholar 

  39. El Kharroubi A, Jacques P, Piras G, Van Beeumen J, Coyette J, Ghuysen J-M (1991) The Enterococcus hirae R40 penicillin-binding protein 5 and the methicillin-resistant Staphylococcus aureus penicillin-binding protein 2′ are similar. Biochem J 280:463–469

    Google Scholar 

  40. El Solh N, Allignet J, Bismuth R, Buret B, Fouace JM (1986) Conjugative transfer of staphylococcal antibiotic resistance markers in the absence of detectable plasmid DNA. Antimicrob Agents Chemother 30:161–169

    Google Scholar 

  41. Fischer H, Tomasz A (1984) Peptidoglycan cross-linking and teichoic acid attachment in Streptococcus pneumoniae. J Bacteriol 163:46–54

    Google Scholar 

  42. Fontana R, Satta G, Romonzi CA (1977) Penicillins activate autolysins extracted from both Escherichia coli and Klebsielle pneumoniae envelopes. Antimicrob Agents Chemother 12:745–747

    Google Scholar 

  43. Fontana R, Varaldo PE, Carreperi P, Satta G (1981) Analysis of penicillin-binding proteins in the membranes of staphylococci of different lysogroups (or species). Zentralbl Bacteriol Parasitenkd Infektionskr Hyg Abt. 1 [Suppl] 10:67–70

    Google Scholar 

  44. Gaisford C, Reynolds PE (1989) Methicillin resistance in Staphylococcus epidermis. Relationship between the additional penicillin-binding protein and an attachment transpeptidase. Eur J Biochem 185:211–218

    Google Scholar 

  45. Garcia-Bustos J, Tomasz A (1990) A biological price of antibiotic resistance: major changes in the peptidoglycan structure of penicillin-resistant pneumococci. Proc Natl Acad Sci USA 87:5415–5419

    Google Scholar 

  46. Georgopapadakou NH, Liu FY (1980) Binding of β-lactam antibiotics of penicillin-binding proteins of Staphylococcus aureus and Streptococcus faecalis: relation to antibacterial activity. Antimicrob Agents Chemother 18:834–836

    Google Scholar 

  47. Georgopapadakou N, Dix BA, Mauriz YR (1986) Possible physiological functions of penicillin-binding proteins in Staphylococcus aureus. Antimicrob Agents Chemother 29:333–336

    Google Scholar 

  48. Georgopapadakou NH, Cummings LM, LaSala ER, Unowsky J, Pruess DL (1988) Overproduction of penicillin-binding protein 4 in Staphylococcus aureus is associated with methicillin resistance. In: Actor P, Daneo-Moore L, Higgins ML, Salton MRJ, Shockman GD (ed) Antibiotic inhibition of bacterial cell surface assembly and function. American Society for Microbiology, Washington D. C., pp 597–602

    Google Scholar 

  49. Ghuysen JM (1991) Serine β-lactamases and penicillin-binding proteins. Annu Rev Microbiol 45:37–67

    Google Scholar 

  50. Ghuysen JM, Frère JM, Joris B, Dusart J, Duez C, Leyh-Bouille M, Nguyen-Distèche M, Coyette J, Dideberg O, Charlier P, Dive G, Lamotte-Brasseur J (1989) Inhibition of enzymes involved in bacterial cell wall synthesis. In: Sandler M, Smith HJ (eds) Design of enzyme inhibitors as drugs. Oxford University Press, New York, pp 523–572

    Google Scholar 

  51. Giesbrecht P (1984) Novel bacterial wall organelles (“murosomes”) in staphylococci: their involvement in wall assembly. In: Nobela C (ed) Microbial cell wall synthesis and autolysis. Elsevier, Amsterdam, pp 177–186

    Google Scholar 

  52. Giesbrecht P, Wecke J, Reinicke B (1976) On the morphogenesis of the cell wall of staphylococci. Int Rev Cytol 44:225–318

    Google Scholar 

  53. Giesbrecht P, Labischinski H, Wecke J (1985) A special morphogenetic wall defect and the subsequent activity of “murosomes” as the very reason for penicillin-induced bacteriolysis in staphylococci. Arch Microbiol 141:315–324

    Google Scholar 

  54. Giesbrecht P, Franz M, Krüger D, Labischinski H, Wecke J (1992) Bacteriolysis of staphylococci is only a side-effect of penicillin-induced death. In: Kleinkauf H, von Döhren H (eds) 50 years of penicillin application — the past, the presence and future trends. Walter de Gruyter, Berlin (in press)

    Google Scholar 

  55. Giesbrecht P, Kersten T, Wecke J (1992) Fan-shaped ejections of regularly arranged murosomes involved in penicillin-induced death of staphylococci. J Bacteriol 174:2241–2252

    Google Scholar 

  56. Giesbrecht P, Kersten T, Madela K, Grob H, Blümel P, Wecke J (1992) Penicillin-induced bacteriolysis of staphylococci as a post-mortem consequence of murosome-mediated killing via wall perforation and attempts to imitate this perforation process without applying antibiotics. In: DePedro MA, Höltje JV, Löffelhardt W (eds) Bacterial growth and lysis: metabolism and structure of the bacterial sacculus. Plenum Publishing Corp. New York (in press)

    Google Scholar 

  57. Gustafson JE, Wilkinson BJ (1989) Lower autolytic activity in a homogeneous methicillinresistant Staphylococcus aureus strain compared to derived heterogeneous-resistant and susceptible strains. FEMS Microbiol Lett 59:107–112

    Google Scholar 

  58. Hackbarth CJ, Chambers HF (1989) Methicillin-resistant staphylococci: genetics and mechanisms of resistance. Antimicrob Agents Chemother 33:991–994

    Google Scholar 

  59. Hahn H (1991) Staphylokokken. In: Hahn H, Falke D, Klein P (eds) Medizinische Mikrobiologie, Springer Verlag, Berlin Heidelberg New York Tokyo, pp 249–260

    Google Scholar 

  60. Hakenbeck R, Laible G, Briese T, Martin C, Chalkley L, Latorre C, Kalliokoski R, Leinonen M (1991) Highly variable penicillin-binding proteins in penicillin-resistant strains of Streptococcus pneumoniae. In: Dunny GM, Cleary PP, McKay LL (eds) Genetics and molecular biology of streptococci, lactococci, and enterococci. Am Soc Microbiology, Washington D. C., pp 92–95

    Google Scholar 

  61. Handwerger S, Tomasz A (1985) Antibiotic tolerance among clinical isolates of bacteria. Rev Infect Dis 7:368–386

    Google Scholar 

  62. Hartman BJ, Tomasz A (1984) Low-affinity penicillin-binding protein associated with β-lactam resistance in Staphylococcus aureus. J Bacteriol 158:513–516

    Google Scholar 

  63. Hayes MV, Ward JB (1986) The role of penicillin-binding proteins in the antibacterial activity of β-lactam antibiotics. In: Lorian V (ed) Antibiotics in laboratory medicine, 2nd edn. Williams & Wilkins, Baltimore, pp 722–756

    Google Scholar 

  64. Hayes MV, Curtis NAC, Wyke AW, Ward BJ (1981) Decreased affinity of a penicillinbinding protein for beta-lactam antibiotics in a clinical isolate of Staphylococcus aureus resistant to methicillin. FEMS Microbiol Lett 10:119–122

    Google Scholar 

  65. Henze U, Sidow T, Wecke J, Labischinski H, Berger-Bächi B: Influence of femB on methicillin resistance and peptidoglycan metabolism in Staphylococcus aureus. J Bacteriol (submitted)

  66. Höltje JV, Schwarz U (1985) Biosynthesis and growth of the murein sacculus. In: Nanninga N (ed) Molecular cytology of Escherichia coli. Academic Press, London, pp 77–119

    Google Scholar 

  67. Ishino F, Mitsui K, Tamaki S, Matsuhashi M (1980) Dual enzyme activities of cell wall: peptidoglycan biosynthesis, peptidoglycan transglycosylase and penicillin-sensitive transpeptidase in purified preparations of Escherichia coli penicillin-binding protein 1a. Biochem Biophys Res Commun 97:287–293

    Google Scholar 

  68. Jacoby GA, Archer GL (1991) New mechanisms of bacterial resistance to antimicrobial agents. N Engl J Med 324:601–612

    Google Scholar 

  69. Johannsen L, Labischinski H, Burghaus P, Giesbrecht P (1983) Acetylation in different phases of growth of staphylococci and their relation to cell wall degrability by lysozyme. In: Hakenbeck R, Höltje J, Labischinski H (eds) The target of penicillin. The Murein Sacculus of Bacterial Cell Walls. Architecture and Growth. Walter de Gruyter, Berlin, pp 261–266

    Google Scholar 

  70. Johannsen L, Labischinski H, Reinicke B, Giesbrecht P (1983) Changes in the chemical structure of walls of Staphylococcus aureus grown in the presence of chloramphenicol. FEMS Microbiol Lett 16:313–316

    Google Scholar 

  71. Kayser FH, Benner EJ, Troy R, Hoeprich PC (1971) Mode of resistance against β-lactam antibiotics in staphylococci. Ann N Y Acad Sci 182:106–117

    Google Scholar 

  72. Keane CT, Cafferkey MT (1991) Methicillin resistant Staphylococcus aureus: a guide to epidemiology and control. Rev Med Microbiol 2:50–56

    Google Scholar 

  73. Koch AL, Woeste S (1992) Elasticity of the sacculus of Escherichia coli. J Bacteriol 174:4811–4819

    Google Scholar 

  74. Kornblum J, Hartman BJ, Novick RP, Tomasz A (1986) Conversion of a homogeneously methicillin-resistant strain of Staphylococcus aureus to heterogeneous resistance by Tn551-mediated insertional inactivation. Eur J Clin Microbiol 5:714–718

    Google Scholar 

  75. Kozarich JW, Strominger JL (1978) A membrane enzyme from Staphylococcus aureus which catalyzes transpeptidase-, carboxypeptidase-, and penicillinase-activities. J Biol Chem 253:1272–1278

    Google Scholar 

  76. Labischinski H, Johannsen L (1986) On the relationships between conformational and biological properties of murein. In: Seidl PH, Schleifer KH (eds) Biological properties of peptidoglycan. Walter de Gruyter, Berlin pp 37–42

    Google Scholar 

  77. Labischinski H, Barnickel G, Bradaczek H, Giesbrecht P (1979) On the secondary and tertiary structure of murein. Eur J Biochem 95:147–155

    Google Scholar 

  78. Labischinski H, Barnickel G, Naumann D (1983) The state of order of bacterial peptidoglycan. In: Hackenbeck R, Höltje JV, Labischinski H (eds) Target of penicillin. The Murein Sacculus of Bacterial Cell Walls. Architecture and Growth. Walter de Gruyter, Berlin pp 49–54

    Google Scholar 

  79. Labischinski H, Barnickel G, Naumann D, Keller P (1985) Conformational and topological aspects of the three-dimensional architecture of bacterial peptidoglycan. Ann Inst Pasteur Microbiol 136A: 45–50

    Google Scholar 

  80. Labischinski H, Maidhof H, Franz M, Krüger D, Sidow T, Giesbrecht P (1988) Biochemical and biophysical investigations into the cause of penicillin-induced lytic death: checking predictions of the murosome model. In: Actor P, Daneo-Moore L, Higgins ML, Salton MRJ, Shockman GD (eds) Antibiotic inhibition of bacterial cell surface assembly and function. American Society for Microbiology, Washington D. C., pp 242–257

    Google Scholar 

  81. Labischinski H, Goodell EW, Goodell A, Hochberg ML (1991) Direct proof of a “morethan-single-layered” peptidoglycan architecture of Escherichia coli W7: a neutron smallangle scattering study. J Bacteriol 173:751–756

    Google Scholar 

  82. Labischinski H, Hochberg M, Sidow T, Maidhof H, Henze U, Berger-Bächi B, Wecke J (1992) Biophysical and biochemical studies on the fine structure of the sacculi from Escherichia coli and Staphylococcus aureus. In: DePedro MA, Höltje JV, Löffelhardt W (ed) Bacterial growth and lysis: metabolism and structure of the bacterial sacculus. Plenum Publishing Corp. New York (in press)

    Google Scholar 

  83. Laible G, Hakenbeck R (1987) Penicillin-binding proteins in β-lactam resistant mutants of Streptococcus pneumoniae. Mol Microbiol 1:355–363

    Google Scholar 

  84. Laible G, Hakenbeck R (1991) Five independent combinations of mutations can result in low-affinity penicillin-binding protein 2× of Streptococcus pneumoniae. J Bacteriol 173:6986–6990

    Google Scholar 

  85. Lapidot A, Irving CS (1979) Comparative in vivo nitrogen-15 nuclear magnetic resonance study of the cell wall components of five gram-positive bacteria. Biochemistry 18:704–714

    Google Scholar 

  86. Leps B, Labischinski H, Bradaczek H (1987) Conformational behavior of the polysaccharide backbone of murein. Biopolymers 26:1391–1406

    Google Scholar 

  87. Lutkenhaus J (1992) Bacterial cell division. In: Sutcliffe J, Georgopapadakou NH (eds) Emerging targets in antibacterial and antifungal chemotherapy. Chapman Hall, New York, pp 117–150

    Google Scholar 

  88. Lyon BR, Skurray R (1987) Antimicrobial resistance of Staphylococcus aureus: genetic basis. Microbiol Rev 51:88–134

    Google Scholar 

  89. Maidhof H (1992) Zellwandwachstum von S. aureus: Untersuchungen an sensitiven und β-lactam resistenten Stämmen. Dissertation, Freie Universität Berlin, Berlin

    Google Scholar 

  90. Maidhof H, Johannsen L, Labischinski H, Giesbrecht P (1989) Onset of penicillin-induced bacteriolysis in staphylococci is cell cycle dependent. J Bacteriol 171:2252–2257

    Google Scholar 

  91. Maidhof H, Reinicke B, Blümel P, Berger-Bächi B, Labischinski H (1991) femA, which encodes a factor essential for expression of methicillin resistance, affects glycine content of peptidoglycan in methicillin-resistant and methicillin-susceptible Staphylococcus-aureus strains. J Bacteriol 173:3507–3513

    Google Scholar 

  92. Martin H, Gmeiner J (1979) Modification of peptidoglycan structure by penicillin action in cell walls of Proteus mirabilis. Eur J Biochem 95:487–495

    Google Scholar 

  93. Matsuhashi M, Song MD, Ishino F, Wachi M, Doi M, Inoue M, Ubukata K, Yamashita N, Konno M (1986) Molecular cloning of the gene of a penicillin-binding protein supposed to cause high resistance to β-lactam antibiotics in Staphylococcus aureus. J Bacteriol 167:975–980

    Google Scholar 

  94. Matsuhashi M, Song MD, Wachi M, Maesaki S, Ubukata K, Konno M (1990) Molecular and genetic studies on methicillin resistance in staphylococci. In: Novick RP (ed) Molecular biology of the staphylococci. VCH Publishers, New York pp 457–470

    Google Scholar 

  95. Matthews PR, Stewart PR (1984) Resistance heterogeneity in methicillin-resistant Staphylococcus aureus. FEMS Microbiol Lett 22:161–166

    Google Scholar 

  96. Mitchell P, Moyle J (1957) Autolytic release and osmotic properties of “protoplasts” from Staphylococcus aureus. J Gen Microbiol 16:184–194

    Google Scholar 

  97. Montanari MP, Tonin E, Biavasco F, Varaldo PE (1990) Further characterization of borderline methicillin-resistant Staphylococcus aureus and analysis of penicillin binding proteins. Antimicrob Agents Chemother 34:911–913

    Google Scholar 

  98. Morioka H, Tachibana M, Suganuma A (1987) Ultrastructural localization of carbohydrates on thin sections of Staphylococcus aureus with silver methenamine and wheat germ agglutinin-gold complex. J Bacteriol 169:1358–1362

    Google Scholar 

  99. Murakami K, Nomura K, Doi M, Yoshida T (1987) Production of low-affinity penicillinbinding protein by lowand high-resistance groups of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 31:1307–1311

    Google Scholar 

  100. Musser JM, Kapur V (1992) Clonal analysis of methicillin-resistant Staphylococcus aureus strains from intercontinental sources: association of the mec gene with divergent phylogenetic lineages implies dissemination by horizontal transfer and recombination. J Clin Microbiol 30:2058–2063

    Google Scholar 

  101. Musser MJ, Selander RK (1990) Genetic analysis of natural populations of Staphylococcus aureus. In: Novick RP (ed) Molecular biology of the staphylococci. VCH Publishers, New York, pp 59–67

    Google Scholar 

  102. Nanninga N (1991) Cell division and peptidoglycan assembly in Escherichia coli. Mol Microbiol 5:791–795

    Google Scholar 

  103. Naumann D, Barnickel G, Bradaczek H, Labischinski H, Giesbrecht P (1982) Infrared spectroscopy, a tool for probing bacterial peptidoglycan. Eur J Biochem 125:505–515

    Google Scholar 

  104. O'Hara DM, Harrington CR, Reynolds PE (1989) Immunological detection of penicillinbinding protein 2′ in clinical isolates of methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis. FEMS Microbiol Lett 57:97–104

    Google Scholar 

  105. Oshida T, Tomasz A (1992) Isolation and characterization of a Tn551-autolysis mutant of Staphylococcus aureus. J Bacteriol 174:4952–4959

    Google Scholar 

  106. Ou LT, Marquis RE (1970) Electromechanical interactions in cell walls of gram-positive cocci. J Bacteriol 101:92–101

    Google Scholar 

  107. Park JT (1987) Murein synthesis. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium; cellular and molecular biology, vol 1. American Society for Microbiology, Washington D. C., pp 663–671

    Google Scholar 

  108. Park W, Matsuhashi M (1984) Staphylococcus aureus and Micrococcus luteus peptidoglycan transglycosylases that are not penicillin-binding proteins. J Bacteriol 157:538–544

    Google Scholar 

  109. Peacock JE Jr, Moorman DR, Wenzel RP, Mandell GL (1981) Methicillin-resistant Staphylococcus aureus: microbiologic characteristics, antimicrobial susceptibilities, and assessment of virulence of an epidemic strain. J Infect Dis 144:575–582

    Google Scholar 

  110. Pierre J, Williamson R, Bornet M, Gutmann L (1990) Presence of an additional penicillinbinding protein in methicillin-resistant Staphylococcus epidermis, Staphylococcus haemolyticus, Staphylococcus hominis, and Staphylococcus simulans with a low affinity for methicillin, cephalothin, and cefamandole. Antimicrob Agents Chemother 34:1691–1694

    Google Scholar 

  111. Qoronfleh MW, Wilkinson BJ (1986) Effects of growth of methicillin-resistant and — susceptible Staphylococcus aureus in the presence of β-lactams on peptidoglycan structure and susceptibility to lytic enzymes. Antimicrob Agents Chemother 29:250–257

    Google Scholar 

  112. Reinicke B, Blümel P, Labischinski H, Giesbrecht P (1985) Neither an enhancement of total autolytic wall degradation nor an inhibition of the incorporation of cell wall material are pre-requisites for penicillin-induced bacteriolysis in staphylococci. Arch Microbiol 141:309–314

    Google Scholar 

  113. Reynolds PE (1988) The essential nature of staphylococcal penicillin-binding proteins. In: Actor P, Daneo-Moore L, Higgins ML, Salton MRJ, Shockman GD (ed) Antibiotic inhibition of bacterial cell surface assembly and function. American Society for Microbiology, Washington D. C., pp 343–351

    Google Scholar 

  114. Reynolds PEW, Fuller C (1986) Methicillin-resistant strains of Staphylococcus aureus: presence of identical additional penicillin-binding protein in all strains examined. Antimicrob Agents Chemother 29:85–92

    Google Scholar 

  115. Reynolds PE, O'Hara DM, Gaisford WC, Harrington CR (1990) A unique penicillinbinding protein associated with β-lactam resistance in various staphylococci: immunological and molecular evidence. In: Novick RP (ed) Molecular biology of the staphylococci. VCH Publishers, New York, pp 491–508

    Google Scholar 

  116. Rosenthal RS, Folkening WJ, Miller WJ, Swim SG (1983) Resistance of O-acetylated gonococcal peptidoglycan to human peptidoglycan-degrading enzymes. Infect Immun 40:826–829

    Google Scholar 

  117. Schaberg DR, Culver DH, Gaynes RP (1991) Major trends in the microbial aetiology of nonsocomial infections. Am J Med 91:72–75

    Google Scholar 

  118. Schaefer F, Christenson JG, Talbot MK (1989) Peptidoglycan synthesis in ether-treated cells of Staphylococcus aureus. Abstracts of the 1989 Annual Meeting of the American Society of Microbiology, 14–18 May 1989 New Orleans, American Society for Microbiology, Washington D.C., p 272

    Google Scholar 

  119. Schleifer KH (1983) The cell envelope. In: Easmon CSF, Adlam C (eds) Staphylococci and staphylococcal infections, vol 2. Academic Press, London, pp 358–428

    Google Scholar 

  120. Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    Google Scholar 

  121. Schleifer KH, Kroppenstedt RM (1990) Chemical and molecular classification of staphylococci. J Appl Bacteriol [Suppl] 69:9S-24S

    Google Scholar 

  122. Seligman SJ (1987) Cell division in staphylococci: a clue to the three-dimensional structure of peptidoglycan. J Infect Dis 155:423–432

    Google Scholar 

  123. Severin A, Schuster C, Hakenbeck R, Tomasz A (1992) Altered murein composition in a dd-carboxypeptidase mutant of Streptococcus pneumoniae. J Bacteriol 174:5152–5155

    Google Scholar 

  124. Shockman GD, Barrett JF (1983) Structure, function, and assembly of cell walls of grampositive bacteria. Annu Rev Microbiol 37:501–527

    Google Scholar 

  125. Shockman GD, Daneo-Moore L, McDowell D, Wong W (1981) Function and structure of the cell wall — its importance in the life and death of bacteria. In: Salton M, Shockman GD (eds) β-Lactam antibiotics mode of action, new developments, and future prospects. Academic Press, New York, pp 31–65

    Google Scholar 

  126. Sidow T, Johannsen L, Labischinski H (1990) Penicillin-induced changes in the cell wall composition of Staphylococcus aureus before the onset of bacteriolysis. Arch Microbiol 153:73–81

    Google Scholar 

  127. Sinha RK, Neuhaus FC (1991) Biosynthesis of peptidoglycan in Gaffkya homari: On the target(s) of benzylpenicillin. Antimicrob Agents Chemother 35:1753–1759

    Google Scholar 

  128. Smith MB (1992) Terminology of Staphylococcus aureus strains showing decreased susceptibility to methicillin. J Antimicrob Chemother 29:219–232

    Google Scholar 

  129. Snowden MA, Perkins HR (1990) Peptidoglycan cross-linking in Staphylococcus aureus: an apparent random polymerization process. Eur J Biochem 191:373–377

    Google Scholar 

  130. Snowden MA, Perkins HR (1991) Cross-linking and O-acetylation of peptidoglycan in Staphylococcus aureus (strains H and MR-1) grown in the presence of sub-growth-inhibitory concentratons of β-lactam antibiotics. J Gen Microbiol 137:1661–1666

    Google Scholar 

  131. Snowden MA, Perkins HR, Wyke A, Hayes MV, Ward JB (1989) Cross-linking and O- acetylation of newly synthesized peptidoglycan in Staphylococcus aureus H. J Gen Microbiol 135:3015–3022

    Google Scholar 

  132. Song MD, Wachi M, Doi M, Ishino F, Matsuhashi M (1987) Evolution of an inducible penicillin-target protein in methicillin-resistant Staphylococcus aureus by gene fusion. FEBS Lett 221:167–171

    Google Scholar 

  133. Spratt BG (1980) Biochemical and genetical approaches to the mechanism of action of penicillin. Philos Trans R Soc Lond [Biol] 289:273–283

    Google Scholar 

  134. Suganuma A (1991) Electron microscopic observations of stahylococci. Zentralbl Bakteriol Mikrobiol Hyg [A] [Suppl] 21:27–35

    Google Scholar 

  135. Suginaka H, Blumberg PM, Strominger JL (1972) Multiple penicillin-binding components in Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, and Escherichia coli. J Biol Chem 247:5259–5288

    Google Scholar 

  136. Tipper DJ, Strominger JL (1965) Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-d-alanyl-dD-alanine. Proc Natl Acad Sci USA 54:1133–1141

    Google Scholar 

  137. Tomasz A (1979) The mechanism of the irreversible antimicrobial effects of penicillins: How beta-lactam antibiotics kill and lyse bacteria. Annu Rev Microbiol 33:113–137

    Google Scholar 

  138. Tomasz A (1990) Auxiliary genes assisting in the expression of methicillin resistance in Staphylococcus aureus. In: Novick RP (ed) Molecular biology of the staphylococci. VCH Publishers, New York, pp 565–583

    Google Scholar 

  139. Tomasz A, Drugeon HB, DeLencastre HM, Jarbes D, McDougall L, Bile J (1989) New mechanism for methicillin resistance in Staphylococcus aureus: clinical isolates that lack the PBP2a gene and contain normal penicillin-binding proteins with modified penicillinbinding capacity. Antimicrob Agents Chemother 33:1869–1874

    Google Scholar 

  140. Tomasz A, Nachman S, Leaf H (1991) Stable classes of phenotypic expression of methicillinresistant clinical isolates of staphylococci. Antimicrob Agents Chemother 35:124–129

    Google Scholar 

  141. Tonin E, Tomasz A (1986) β-lactam-specific resistant mutants of Staphylococcus aureus. Antimicrob Agents Chemother 30:577–583

    Google Scholar 

  142. Toynbee A (1992) Preface. In: Sutcliffe JA, Georgopapadakou NH (ed) Emerging targets in antibacterial and antifungal chemotherapy. Chapman and Hall, New York, pp xi-xiii

    Google Scholar 

  143. Ubukata K, Yamashita N, Konno M (1985) Occurrence of β-lactam-inducible penicillinbinding protein in methicillin-resistant staphylococci. Antimicrob Agents Chemother 28:397–403

    Google Scholar 

  144. Umeda A, Ikebuchi T, Amako K (1980) Location of bacteriophage receptor, clumping factor, and protein A on the cell surface of Staphylococcus aureus. J Bacteriol 141:838–844

    Google Scholar 

  145. Utsui Y, Yokota T (1985) Role of an altered penicillin-binding protein in methicillin-and cephem-resistant Staphylococcus aureus. Antimicrob Agents Chemother 28:397–403

    Google Scholar 

  146. Waxman DJ, Stromingr L (1983) Penicillin-binding proteins and the mechanism of action of β-lactam antibiotics. Annu Rev Biochem 52:825–869

    Google Scholar 

  147. Waxman DJ, Yocum RR, Strominger JL (1980) Penicillins and cephalosporins are active site-directed acylating agents: evidence in support of the substrate analogue hypothesis. Philos Trans R Soc Lond [Biol] 289:257–271

    Google Scholar 

  148. Wecke J, Giesbrecht P (1981) Electron microscopic studies on the “paradoxical” reaction of staphylococci during treatment with antibiotics. In: Jeljaszewisz J (ed) Staphylococci and stahylococcal infections. Gustav Fischer Verlag, Stuttgart, pp 455–467

    Google Scholar 

  149. Weidel W, Pelzer H (1964) Bagshaped macromolecules — a new outlook on bacterial cell walls. Adv Enzymol 26:193–232

    Google Scholar 

  150. Wilkinson BJ, Dorian KJ, Sabath LD (1978) Cell wall composition and associated properties of methicillin-resistant Staphylococcus aureus strains. J Bacteriol 136:976–982

    Google Scholar 

  151. Wilkinson BJ, Nadakavukaren MJ (1983) Methicillin-resistant septal peptidoglycan synthesis in a methicillin-resistant Staphylococcus aureus strain. Antimicrob Agents Chemother 23:610–613

    Google Scholar 

  152. Witte W (1990) Typing of multiresistant and methicillin-resistant Staphylococcus aureus by classical and molecular methods and their use in epidemiology. In: Novick RP (ed) Molecular biology of the staphylococci. VCH Publishers, New York, pp 607–616

    Google Scholar 

  153. Wyke AW (1984) Isolation of five penicillin-binding proteins from Staphylococcus aureus. FEMS Microbiol Lett 22:133–138

    Google Scholar 

  154. Wyke AW, Ward JB, Hayes MV (1982) Synthesis of peptidoglycan in vivo in methicillinresistant Staphylococcus aureus. Eur J Biochem 127:553–558

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labischinski, H. Consequences of the interaction of β-lactam antibiotics with penicillin binding proteins from sensitive and resistant Staphylococcus aureus strains. Med Microbiol Immunol 181, 241–265 (1992). https://doi.org/10.1007/BF00198846

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00198846

Keywords

Navigation