Skip to main content
Log in

Isothermal flow in a gas turbine combustor — a benchmark experimental study

  • Originals
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

An experimental investigation of the three-dimensional flow field within a water model of a can-type gas turbine combustion chamber is presented. Flow visualisation demonstrated that internal flow patterns simulated closely those expected in real combustors. The combustor comprised a swirl driven primary zone, annulus fed primary and dilution jets and an exit contraction nozzle. LDA measurements of the three mean velocity components and corresponding turbulence intensities were obtained to map out the flow development throughout the combustor. Besides providing information to aid understanding of the complex flow events inside combustors, the data are believed to be of sufficient quantity and quality to act as a benchmark test case for the assessment of the predictive accuracy of computational models for gas-turbine combustors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, S. A.; So, R. M. C. 1987: Characteristics of air jets discharging normally into a swirling cross-flow. AIAA J 25, 429–435

    Google Scholar 

  • Altgeld, H.; Jones, W. P.; Wilhelmi, J. 1983: Velocity measurements in a confined swirl driven recirculating flow. Exp. Fluids 1, 73–78

    Google Scholar 

  • Bhangu, J. K.; Snape, D. M.; Eardley, B. R. 1983: The design and development of a low emissions transply combustor for the civil Spey engine. AGARD CP 353

  • Bicen, A. F.; Jones, W. P. 1986: Velocity characteristics of isothermal and combusting flows in a model can-type combustor. Combust. Sci. Technol. 49, 1–15

    Google Scholar 

  • Bruce, T. W.; Mongia, H. C.; Reynolds, R. S. 1979: Combustor design criteria validation. USARTL-TR-78-55, 1–3

  • Coupland, J.; Priddin, C. H. 1986: Modelling the flow and combustion in a production gas turbine combustor. In: Turbulent shear flows 5 (ed. Durst, F.; Launder, B. E.; Lumley, J. L.; Schmidt, F. W.; Whitelaw, J. H.), pp. 310–323. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Durst, F.; Melling, A.; Whitelaw, J. H. 1981: Principles and practice of laser Doppler anemometry. New York: Academic Press

    Google Scholar 

  • Gradon, K.; Miller, S. C. 1968: Combustion development on the Rolls-Royce Spey engine. In: Combustion in advanced gas turbine systems (Cranfield Int. Symp. Ser. Vol. 10) (ed. Smith, J. E.). New York: Pergamon Press

    Google Scholar 

  • Jones, W. P.; Toral, H. 1983: Temperature and composition measurements in a research gas turbine combustion chamber. Combust. Sci. Technol. 31, 249–275

    Google Scholar 

  • Khan, Z. A.; McGuirk, J. J.; Whitelaw, J. H. 1981: A row of jets in a cross-flow. AGARD CP 308

  • Kilik, E. 1976: The influence of swirler design parameters on the aerodynamics of the downstream recirculation region. PhD thesis, School of Mechanical Engineering, Cranfield Institute of Technology, UK

    Google Scholar 

  • Koutmos, P. 1985: An isothermal study of gas turbine combustor flows. PhD thesis, University of London, UK

    Google Scholar 

  • Koutmos, P.; McGuirk, J. J.; Vafidis, C. 1984: Internal flow-field measurements in a model can-type gas-turbine combustion chamber. In: Laser anemometry in fluid mechanics (ed. Adrian, R. J.; Durão, D. F. G.; Durst, F.; Mishina, H.; Whitelaw, J. H.), pp. 305–317. Lisboa/Portugal: Ladoan

    Google Scholar 

  • La Rue, J. C.; Samuelsen, G. S.; Seiler, E. T. 1984: Momentum and heat flux in a swirl stabilised combustor. Proc. 20th Int. Symp. Combust., The Combustion Institute

  • Lefebvre, A. H. 1983: Gas turbine combustion. Washington/DC: Hemisphere

    Google Scholar 

  • Rhode, D. L.; Lilley, D. G.; McLaughlin, D. K. 1983: Mean flow fields in axisymmetric combustor geometries with swirl. AIAA J. 21, 593–600

    Google Scholar 

  • So, R. M. C.; Ahmed, S. A.; Mongia, H. C. 1985: Jet characteristics in confined swirling flows. Exp. Fluids 3, 221–230

    Google Scholar 

  • Sturgess, G. J.; Syed, S. A. 1980: Validation studies of turbulence and combustion models for aircraft gas turbine combustors. In: Proc. Symp. Momentum and Heat Transfer Processes in Recirculating Flows (ed. Launder, B. E.; Humphrey, J. A. C.), pp. 71–89. ASME Winter Annu. Meet. Chicago/IL, November

  • Vu, B. T.; Gouldin, F. C. 1982: Flow measurements in a model swirl combustor. AIAA J. 20, 642–651

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koutmos, P., McGuirk, J.J. Isothermal flow in a gas turbine combustor — a benchmark experimental study. Experiments in Fluids 7, 344–354 (1989). https://doi.org/10.1007/BF00198453

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00198453

Keywords

Navigation