Skip to main content
Log in

1H, 15N, 13C and 13CO assignments and secondary structure determination of basic fibroblast growth factor using 3D heteronuclear NMR spectroscopy

  • Research Paper
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

The assignments of the 1H, 15N, 13CO and 13C resonances of recombinant human basic fibroblast growth factor (FGF-2), a protein comprising 154 residues and with a molecular mass of 17.2 kDa, is presented based on a series of three-dimensional triple-resonance heteronuclear NMR experiments. These studies employ uniformly labeled 15N- and 15N-/13C-labeled FGF-2 with an isotope incorporation >95% for the protein expressed in E. coli. The sequence-specific backbone assignments were based primarily on the interresidue correlation of Cα, Cβ and Hα to the backbone amide 1H and 15N of the next residue in the CBCA(CO)NH and HBHA(CO)NH experiments and the intraresidue correlation of Cα, Cβ and Hα to the backbone amide 1H and 15N in the CBCANH and HNHA experiments. In addition, Cα and Cβ chemical shift assignments were used to determine amino acid types. Sequential assignments were verified from carbonyl correlations observed in the HNCO and HCACO experiments and Cα correlations from the carbonyl correlations observed in the HNCO and HCACO experiments and Cα correlations from the HNCA experiment. Aliphatic side-chain spin systems were assigned primarily from H(CCO)NH and C(CO)NH experiments that correlate all the aliphatic 1H and 13C resonances of a given residue with the amide resonance of the next residue. Additional side-chain assignments were made from HCCH-COSY and HCCH-TOCSY experiments. The secondary structure of FGF-2 is based on NOE data involving the NH, Hα and Hβ protons as well as 3JH n Hα coupling constants, amide exchange and 13Cα and 13Cβ secondary chemical shifts. It is shown that FGF-2 consists of 11 well-defined antiparallel β-sheets (residues 30–34, 39–44, 48–53, 62–67, 71–76, 81–85, 91–94, 103–108, 113–118, 123–125 and 148–152) and a helix-like structure (residues 131–136), which are connected primarily by tight turns. This structure differs from the refined X-ray crystal structures of FGF-2, where residues 131–136 were defined as β-strand XI. The discovery of the helix-like region in the primary heparin-binding site (residues 128–138) instead of the β-strand conformation described in the X-ray structures may have important implications in understanding the nature of heparin-FGF-2 interactions. In addition, two distinct conformations exist in solution for the N-terminal residues 9–28. This is consistent with the X-ray structures of FGF-2, where the first 17–19 residues were ill defined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ago H., Kitagawa Y., Fujishima A., Matsuura Y. and Katsube Y. (1991) J. Biochem. 110, 360–363.

    Google Scholar 

  • Archer S.J., Vinson V.K., Pollard T.D. and Torchia D.A. (1993) Biochemistry, 32, 6680–6687.

    Google Scholar 

  • Baird A. and Bohlen P. (1990) In Peptide Growth Factors and their Receptors (Eds., Sporn M. and Sporn R.) Springer, New York, NY, pp. 369–418.

    Google Scholar 

  • Basilico C. and Moscatelli D. (1992) Adv. Cancer Res., 59, 115–165.

    Google Scholar 

  • Bax A., Clore G.M., Driscoll P.C., Gronenborn A.M., Ikura M. and Kay L.E. (1990) J. Magn. Reson., 87, 620–627.

    Google Scholar 

  • Bax A. and Pochapsky S.S. (1992) J. Magn. Reson., 99, 638–643.

    Google Scholar 

  • Carr M.D., Birdsall B., Frenkiel T.A., Bauer C.J., Jimenez-Barbero J., Polshakov V.I., McCormick J.E., Roberts G.C.K. and Feeney J. (1991) Biochemistry, 30, 6330–6341.

    Google Scholar 

  • Clore G.M. and Gronenborn A.M. (1989) Crit. Rev. Biochem. Mol. Biol., 24, 479–564.

    Google Scholar 

  • Clore G.M. and Gronenborn A.M. (1991a) J. Mol. Biol., 221, 47–53.

    Google Scholar 

  • Clore G.M. and Gronenborn A.M. (1991b) Prog. NMR Spectrosc., 23, 43–92.

    Google Scholar 

  • Clore G.M., Wingfield P.T. and Gronenborn A.M. (1991) Biochemistry, 30, 2315–2323.

    Google Scholar 

  • Delaglio F., Grezesiek S., Vuister G.W., Zhu G., Pfeifer J. and Bax A. (1995) J. Biomol. NMR, 6, 277–293.

    Google Scholar 

  • Eriksson A.E., Cousens L.S., Weaver L.H. and Matthews B.W. (1991) Proc. Natl. Acad. Sci. USA, 88, 3441–3445.

    Google Scholar 

  • Folkman J. and Klagsbrun M. (1987) Science, 235, 442–447.

    Google Scholar 

  • Friedrichs M.S., Mueller L. and Wittekind M. (1994) J. Biomol. NMR, 4, 703–726.

    Google Scholar 

  • Garrett D.S., Powers R., Gronenborn A.M. and Clore G.M. (1991) J. Magn. Reson., 95, 214–220.

    Google Scholar 

  • Gospodarowicz D. and Cheng J. (1986) J. Cell. Physiol., 128, 475–484.

    Google Scholar 

  • Grzesiek S. and Bax A. (1992a) J. Magn. Reson., 99, 201–207.

    Google Scholar 

  • Grzesiek S. and Bax A. (1992b) J. Magn. Reson., 96, 432–440.

    Google Scholar 

  • Grzesiek S., Anglister J. and Bax A. (1993) J. Magn. Reson. Ser. B., 101, 114–119.

    Google Scholar 

  • Grzesiek S. and Bax A. (1993) J. Biomol. NMR, 3, 185–204.

    Google Scholar 

  • Ikura M., Kay L.E. and Bax A. (1991) J. Biomol. NMR, 1, 299–304.

    Google Scholar 

  • Kabsch W. and Sander L. (1983) Biopolymers, 22, 2577–2637.

    CAS  PubMed  Google Scholar 

  • Kay L.E., Ikura M., Tschudin R. and Bax A. (1990) J. Magn. Reson., 89, 496–514.

    Google Scholar 

  • Li L.Y., Safran M., Aviezer D., Boehlen P., Seddon A.P. and Yayon A. (1994) Biochemistry, 33, 10999–11007.

    Google Scholar 

  • Margalit H., Fischer N. and Ben-Sasson S.A. (1993) J. Biol. Chem., 268, 19228–19231.

    Google Scholar 

  • Marion D., Ikura M., Tschudin R. and Bax A. (1989a) J. Magn. Reson., 85, 393–399.

    Google Scholar 

  • Marion D., Driscoll P.C., Kay L.E., Wingfield P.T., Bax A., Gronenborn A.M. and Clore G.M. (1989b) Biochemistry, 28, 6150–6156.

    Google Scholar 

  • Marion D., Kay L.E., Sparks S.W., Torchia D.A. and Bax A. (1989c) J. Am. Chem. Soc., 111, 1515–1517.

    Google Scholar 

  • Miyamoto M., Naruo K.-I., Seko C., Matsumoto S., Kondo T. and Kurokawa T. (1993) Mol. Cell. Biol., 13, 4251–4259.

    Google Scholar 

  • Moy F.J., Lowry D.F., Matsumura P., Dahlquist F.W., Krywko J.E. and Domaille P.J. (1994) Biochemistry, 33, 10731–10742.

    Google Scholar 

  • Pantoliano M.W., Horlick R.A., Springer B.A., VanDyk D.E., Tobery T., Wetmore D.R., Lear J.D., Nahapetian A.T., Bradley J.D. and Sisk W.P. (1994) Biochemistry, 33, 10229–10248.

    Google Scholar 

  • Pineda-Lucena A., Nunez de Castro I., Lozano R.M., Munoz-Willery I. and Zazo M. (1994a) Eur. J. Biochem., 222, 425–431.

    Google Scholar 

  • Pineda-Lucena A., Jimenez M.A., Nieto J.L., Rico M. and Gimenez G.G. (1994b) J. Mol. Biol., 242, 81–98.

    Google Scholar 

  • Powers R., Gronenborn A.M., Clore G.M. and Bax A. (1991a) J. Magn. Reson., 94, 209–213.

    Google Scholar 

  • Powers R., Clore G.M., Bax A., Garrett D.S., Stahl S.J., Wingfield P.T. and Gronenborn A.M. (1991b) J. Mol. Biol., 221, 1081–1090.

    Google Scholar 

  • Powers R., Garrett D.S., March C.J., Frieden E.A., Gronenborn A.M. and Clore G.M. (1992) Biochemistry, 31, 4334–4346.

    Google Scholar 

  • Reiland J. and Rapraeger A.C. (1993) J. Cell. Sci., 105, 1085–1093.

    Google Scholar 

  • Roghani M. and Moscatelli D. (1992) J. Biol. Chem., 267, 22156–22162.

    Google Scholar 

  • Saksela O., Moscatelli D., Sommer A. and Rifkin D.B. (1988) J. Cell Biol., 107, 743–751.

    Google Scholar 

  • Seavey B.R., Farr E.A., Westler W.M. and Markley J.L. (1991) J. Biomol. NMR, 1, 217–230.

    Google Scholar 

  • Seddon A.P., Decker M., Muller T., Armellino D., Kovesdi I., Gluzman Y. and Böhlen P. (1991) Ann. New York Acad. Sci., 638, 98–108.

    Google Scholar 

  • Shirakawa M., Fairbrother W.J., Serikawa Y., Ohkubo T., Kyogoku Y. and Wright P.E. (1993) Biochemistry, 32, 2144–2153.

    Google Scholar 

  • Sklenář V., Piotto M., Leppik R. and Saudek V. (1993) J. Magn. Reson. Ser. A., 102, 241–245.

    Google Scholar 

  • Sommer A. and Rifkin D.B. (1989) J. Cell. Physiol., 138, 215–220.

    Google Scholar 

  • Soteriou A., Carr M.D., Frenkiel T.A., McCormick J.E., Bauer C.J., Sali D., Birdsall B. and Feeney J. (1993) J. Biomol. NMR, 3, 535–546.

    Google Scholar 

  • Spera S. and Bax A. (1991) J. Am. Chem. Soc., 113, 5490–5492.

    Google Scholar 

  • Thompson L.D., Pantoliano M.W. and Springer B.A. (1994) Biochemistry, 33, 3831–3840.

    Google Scholar 

  • Vuister G.W. and Bax A. (1993) J. Am. Chem. Soc., 115, 7772–7777.

    Google Scholar 

  • Westall F.C., Rubin R. and Gospodarowicz D. (1983) Life Sci., 33, 2425–2429.

    Google Scholar 

  • Yayon A., Klagsbrun M., Esko J.D., Leder P. and Ornitz D.M. (1991) Cell, 64, 841–848.

    Google Scholar 

  • Zhang J., Cousens L.S., Barr P.J. and Sprang S.R. (1991) Proc. Natl. Acad. Sci. USA, 88, 3446–3450.

    Google Scholar 

  • Zhu X., Komiya H., Chirino A., Faham S., Fox G.M., Arakawa T., Hsu B.T. and Rees D.C. (1983) Science, 251, 90–93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moy, F.J., Seddon, A.P., Campbell, E.B. et al. 1H, 15N, 13C and 13CO assignments and secondary structure determination of basic fibroblast growth factor using 3D heteronuclear NMR spectroscopy. J Biomol NMR 6, 245–254 (1995). https://doi.org/10.1007/BF00197806

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00197806

Keywords

Navigation