Skip to main content
Log in

Stomatal patchiness in conifers: experiments with Picea abies (L.) Karst. and Abies alba Mill.

  • Published:
Trees Aims and scope Submit manuscript

Summary

Strong evidence for the occurrence of pronounced stomatal patchiness in needles of Picea abies (L.) Karst. and Abies alba Mill. was found using various indirect methods. Anatomical investigations revealed a septate leaf anatomy for both species, a phenomenon expected if a patchy distribution of stomatal aperture is present. Calculation of some photosynthetic characteristics (e.g. carboxylation efficiency) from gas exchange measurements is shown to be markedly affected by the patchy distribution of stomatal apertures on the needles. The importance of stomatal patchiness in connection with air pollution related forest decline symptoms as well as an hypothesis suggesting a possible role of the phenomenon as a protective mechanism against photoinhibition are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  • Beyschlag W, Pfanz H (1990) A fast method to detect the occurrence of nonhomogeneous distribution of stomatal aperture in heterobaric plant leaves. Experiments with Arbutus unedo L. during the diurnal course. Oecologia 82: 52–55

    Article  Google Scholar 

  • Beyschlag W, Wedler M, Lange OL, Heber U (1987) Einfluß einer Magnesiumdüngung auf Photosynthese und Transpiration von Fichten an einem Magnesium-Mangelstandort im Fichtelgebirge. Allg Forstz 27/28/29: 738–740

    Google Scholar 

  • Beyschlag W, Pfanz H, Ryel RJ (1992) Stomatal patchiness in Mediterranean evergreen sclerophylls. Phenomenology and consequences for the interpretation of the midday depression in photosynthesis and transpiration. Planta 187: 546–553

    Article  CAS  PubMed  Google Scholar 

  • Butin H (1989) Krankheiten der Wald- und Parkbäume. Diagnose, Biologie, Bekämpfung. Thieme, Stuttgart

    Google Scholar 

  • Caemmerer S von, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153: 376–387

    Article  Google Scholar 

  • Cheeseman JM (1991) PATCHY: simulating and visualizing the effects of stomatal patchiness on photosynthetic CO2 exchange studies. Plant Cell Environ 14: 593–599

    Article  Google Scholar 

  • Dai Z, Edwards GE, Ku MSB (1992) Control of photosynthesis and stomatal conductance in Rhizinus communis L. (Castor Bean) by leaf to air vapor pressure deficit. Plant Physiol 99: 1426–1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daley PF, Raschke K, Ball JT, Berry JA (1989) Topography of photosynthetic activity of leaves obtained from video images of chlorophyll fluorescence. Plant Physiol 90: 1233–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Downton WJS, Loveys BR, Grant WJR (1988a) Stomatal closure fully accounts for the inhibition of photosynthesis by abscisic acid. New Phytol 108:263–266

    Article  CAS  Google Scholar 

  • Downton WJS, Loveys BR, Grant WJR (1988b) Non-uniform stomatal closure induced by water stress causes putative non-stomatal inhibition of photosynthesis. New Phytol 110: 503–509

    Article  Google Scholar 

  • Farquhar GD (1989) Models of integrated photosynthesis of cells and leaves. Phil Trans R Soc London Ser B 323: 357–367

    Article  CAS  Google Scholar 

  • Farquhar GD, Hubick KT, Terashima I, Condon AG, Richards RA (1987) Genetic variation in the relationship between photosynthetic CO2 assimilation rate and stomatal conductance to water loss. Progr Photosynth Res IV: 209–212

    Article  Google Scholar 

  • Gerlach D (1977) Botanische Mikrotechnik. Thieme, Stuttgart

    Google Scholar 

  • Hartmann G, Nienhaus F, Butin H (1988) Farbatlas Waldschäden. Diagnose von Baumkrankheiten. Ulmer, Stuttgart

    Google Scholar 

  • Kraalingen DWG van (1990) Implications of non-uniform Stomatal closure on gas exchange calculations. Plant Cell Environ 13: 1001–1004

    Article  Google Scholar 

  • Krause GH (1988) Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiol Plant 74: 566–574

    Article  CAS  Google Scholar 

  • Lange OL, Beyschlag W, Meyer A, Tenhunen JD (1984) Determination of photosynthetic capacity of lichens in the field — a method for measuring light response curves at saturating CO2-concentrations. Flora 175: 283–293

    Google Scholar 

  • Lange OL, Gebel J, Schulze ED, Walz H (1985) Eine Methode zur raschen Charakterisierung der photosynthetischen Leistungsfähigkeit von Bäumen unter Freilandbedingungen — Anwendung zur Analyse “neuartiger Waldschäden” bei der Fichte. Forstw Cbl 104: 186–198

    Article  Google Scholar 

  • Lange OL, Heber U, Schulze ED, Ziegler H (1989a) Atmospheric pollutants and plant metabolism. In: Schulze ED, Lange OL, Oren R (eds) Forest decline and air pollution. A study of spruce (Picea abies) on acid soils. (Ecological studies, vol 77) Springer, Berlin Heidelberg New York, pp 238–273

    Google Scholar 

  • Lange OL, Weikert RM, Wedler M, Gebel J, Heber U (1989b) Photosynthese und Nährstoffversorgung von Fichten aus einem Waldschadensgebiet auf basenarmem Untergrund. Allg Forstz 3: 55–64

    Google Scholar 

  • Lippert M (1992) Multifaktorieller Ansatz zur Analyse der Langzeitwirkung erhöhter CO2- und Ozonkonzentrationen: Gaswechselmessungen an jungen Fichten und Buchen in Expositionskammern, Dissertation, Würzburg

  • Mansfield TA, Wright EA, Lucas PW, Cottam DA (1988) Interactions between air pollutants and water stress. In: Schulte-Hostede S, Darrall NM, Blank LW, Wellburn AR (eds) Air pollution and plant metabolism. Elsevier, London, pp 288–306

    Google Scholar 

  • Mott KA, Cardon ZG, Berry JA (1993) Asymmetric patchy stomatal closure for the two surfaces of Xanthium strumarium L. leaves at low humidity. Plant Cell Environ (in press)

  • Napp-Zinn K (1966) Anatomie des Blattes. I. Blattanatomie der Gymnospermen. In: Zimmermann W, Ozenda P, Wulff HD (eds) Encyclopedia of plant anatomy. Bornträger, Berlin

    Google Scholar 

  • Ni BR, Pallardy SG (1992) Stomatal and nonstomatal limitations to net photosynthesis in seedlings of woody angiosperms. Plant Physiol 99: 1502–1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfanz H, Beyschlag W (1993) Photosynthetic performance and nutrient status of Norway spruce [Picea abies (L.) Karst.] at forest sites of the Ore mountains (Erzgebirge). Trees 7: 115–122

    Article  Google Scholar 

  • Pfanz H, Dietz KJ (1987) A fluorescence method for the determination of the apoplastic proton concentration in intact leaf tissues. J Plant Physiol 129: 41–48

    Article  CAS  Google Scholar 

  • Sharkey TD, Imai K, Farquhar GD, Cowan IR (1982) A direct confirmation of the standard method of estimating intercellular partial pressure of CO2. Plant Physiol 69: 657–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharkey TD, Seemann JR (1989) Mild water stress effects on carbon-reduction cycle intermediates, ribulose bisphosphate carboxylase activity, and spatial homogeneity of photosynthesis in intact leaves. Plant Physiol 89: 1060–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor GE Jr, Tingey DT (1983) Sulfur dioxide flux into leaves of Geranium carolinianum. I. Evidence for a nonstomatal or residual resistance. Plant Physiol 72: 237–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor OC (1984) Organismal responses of higher plants to atmospheric pollutants: photochemical and other. In: Treshow M (ed) Air pollution and plant life. Wiley, Oxford

    Google Scholar 

  • Terashima I, Wong SC, Osmond CB, Farquhar GD (1988) Characterization of non-uniform photosynthesis induced by abscisic acid in leaves having different mesophyll anatomies. Plant Cell Physiol 29: 385–394

    CAS  Google Scholar 

  • Wallin G, Ottosson S, Sellden G (1992) Long term exposure of Norway spruce, Picea abies (L.) Karst. to ozone in open-top chambers. IV. Effects on the stomatal and non-stomatal limitation of photosynthesis and on the carboxylation efficiency. New Phytol 121: 395–401

    Article  CAS  Google Scholar 

  • Ward DA, Drake BG (1988) Osmotic stress temporarily reverses the inhibitions of photosynthesis and stomatal conductance by abscisic acid — evidence that abscisic acid induced a localized closure of stomata in intact, detached leaves. I Exp Bot 39: 147–155

    Article  CAS  Google Scholar 

  • Winner WE, Mooney HA, Williams K, Caemmerer S von (1985) Measuring and assessing SO2 effects on photosynthesis and plant growth. In: Winner WE, Mooney HA, Goldstein RA (eds) Sulfur dioxide and vegetation: physiology, ecology and policy issues. Stanford University Press, Stanford, pp 118–132

    Google Scholar 

  • Winner WE, Gillespie C, Shen WS, Mooney HA (1988) Stomatal responses to SO2 and O3. In: Schulte-Hostede S, Darrall NM, Blank LW, Wellburn AR (eds) Air pollution and plant metabolism. Elsevier, London, pp 255–271

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beyschlag, W., Kresse, F., Ryel, R.J. et al. Stomatal patchiness in conifers: experiments with Picea abies (L.) Karst. and Abies alba Mill.. Trees 8, 132–138 (1994). https://doi.org/10.1007/BF00196637

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00196637

Key words

Navigation