Skip to main content
Log in

Pulsars as gamma ray sources: Nebular shocks and magnetospheric gaps

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

I summarize the results of recent research on the structure and particle acceleration properties of relativistic shock waves in which the magnetic field is transverse to the flow direction in the upstream medium, and whose composition is primarily electrons and positrons with an admixture of heavy ions. Shocks which contain heavy ions that are a minority constituent by number but which carry most of the energy density in the upstream medium put ∼ 20% of the flow energy into a nonthermal population of pairs downstream, whose distribution in energy space is N(E) α E -2, where N(E)dE is the number of particles with energy between E and E+dE. Synchrotron maser activity in the shock front, stimulated by the quasi-coherent gyration of the whole particle population as the plasma flowing into the shock reflects from the magnetic field in the shock front, provides the mechanism of thermalization and non-thermal particle acceleration. The maximum energy achievable by the pairs is γ ± m ± c 2 = m i c 2 γ 1/Z i, where γ 1 is the Lorentz factor of the upstream flow and Z i is the atomic number of the ions. The shock's spatial structure contains a series of “overshoots” in the magnetic field, regions where the gyrating heavy ions compress the magnetic field to levels in excess of the eventual downstream value. These overshoots provide a new interpretation of the structure of the inner regions of the Crab Nebula, in particular of the “wisps”, surface brightness enhancements near the pulsar. The wisps appear brighter because the small Larmor radius pairs are compressed and radiate more efficiently in the regions of more intense magnetic field. This interpretation suggests that the structure of the shock terminating the pulsar's wind in the Crab Nebula is spatially resolved, and allows one to measure γ 1 ∼ 4 × 106, the upstream magnetic field B 1 to be ∼ 3 × 10-5 Gauss, as well as to show that the total ion flow is ∼ 3 × 1034 elementary charges/sec, in good agreement with the total current flow predicted by the early Goldreich and Julian (1969) model. The total pair outflow is shown to be about 5 × 1037 pairs per second, in good agreement with the particle flux required to explain the nebular X—ray source.

The energetics of particle acceleration within the magnetospheres of rotation powered pulsars and the consequences for pulsed gamma ray emission are also briefly discussed. The gamma ray luminosity above 100 MeV is shown to scale in proportion to Ė 1/2 R , as is in accord with some of the simplest ideas about “polar cap” models. Models based on acceleration in the outer magnetosphere are also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alsop, D., and Arons, J. 1988, Phys. Fluids, 31, 839.

    Google Scholar 

  • Arons, J., and Scharlemann, E.T. 1979, ApJ, 231, 854

    Google Scholar 

  • Arons, J. 1981a, in Plasma Astrophysics, T.D. Guyenne and G. Levy, eds. (Paris: ESASP-161), 273

  • Arons, J. 1981b, in IAU Symp. No. 95, ‘Pulsars’, W. Sieber and R. Wielebinski, eds. (Dordrecht: Reidel), 69

    Google Scholar 

  • Arons, J. 1983a, in Proc. Workshop on Electron-Positron Pairs in Astrophysics, ed. M.L. Burns, A.K. Harding, and R. Ramaty (New York:American Institute of Physics), p. 163.

    Google Scholar 

  • Arons, J. 1983b, ApJ, 266, 215

    Google Scholar 

  • Arons, J. 1993, ApJ, 408, 160

    Google Scholar 

  • Arons, J., and Tavani, M. 1993, ApJ, 403, 249

    Google Scholar 

  • Aschenbach, B., and Brinkmann, W. 1975, A&A, 41, 147.

    Google Scholar 

  • Barnard, J.J. 1986, ApJ, 303, 280

    Google Scholar 

  • Begelman, M.C., and Kirk, J.G. 1990, ApJ, 353, 66

    Google Scholar 

  • Begelman, M.C., and Li, Z.-Y. 1992, ApJ, 397, 187

    Google Scholar 

  • Bell, A.R. 1978, MNRAS, 182, 147

    Google Scholar 

  • Beskin, V.S. 1990, Pis'ma Ast. th., 16, 665 (Soviet Astr. — Letters, 16, 330)

    Google Scholar 

  • Bogovalov, S.V., and Kotov, Yu.D. 1992, MNRAS, 257, 537

    Google Scholar 

  • Brinkmann, W., Aschenbach, B., and Langmeier, A. 1985, Nature, 313, 662

    Google Scholar 

  • Chen, K.-Y., and Ruderman, M.A. 1993, ApJ, 408, 179

    Google Scholar 

  • Cheng, A.F., and Ruderman, M.A. 1977, ApJ, 216, 865

    Google Scholar 

  • Cheng, K.S., Ho, C., and Ruderman, M.A. 1986, ApJ, 300, 500; ibid., 522

    Google Scholar 

  • Chiang, J., and Romani, R.W. 1994, ApJ, 436, 754

    Google Scholar 

  • Daugherty, J.K., and Harding, A.K. 1994, ApJ, 429, 325

    Google Scholar 

  • de Jager, O.C., and Harding. A.K. 1992, ApJ, 396, 161.

    Google Scholar 

  • Ellison, D.C., Jones, F.C., and Reynolds, S.P. 1990, ApJ, 360, 702.

    Google Scholar 

  • Emmering, R.T., and Chevalier, R.A. 1987, ApJ, 321, 334

    Google Scholar 

  • Gallant, Y.A., Hoshino, M., Langdon, A.B., Arons, J., and Max, C.E. 1992, ApJ, 391, 73

    Google Scholar 

  • Fawley, W.M., Arons, J., and Scharlemann, E.T. 1977, ApJ, 217, 227

    Google Scholar 

  • Gallant, Y.A. and Arons, J. 1994, ApJ, 435, 230

    Google Scholar 

  • Gallant, Y.A., and Kirk, J. 1995, submitted to Astr. and Ap.

  • Goldreich, P., and Julian, W.H. 1969, ApJ, 157, 869

    Google Scholar 

  • Graham, J. 1995, submitted to ApJ

  • Holloway, N.J. 1973, Nature (Phys. Sci.), 246, 6

    Google Scholar 

  • Hoshino, M., and Arons, J. 1991, Phys. Fluids B, 3, 818.

    Google Scholar 

  • Hoshino, M., Arons, J., Gallant, Y.A., and Langdon, A.B. 1992, ApJ, 390, 454.

    Google Scholar 

  • Jones, T.W., and Hardee, P.E. 1979, ApJ, 228, 268.

    Google Scholar 

  • Kennel, C.F., and Coroniti, F.V. 1984a, ApJ, 283, 694.

    Google Scholar 

  • Kennel, C.F., and Coroniti, F.V. 1984b, ApJ, 283, 710.

    Google Scholar 

  • Kundt, W., and Krotscheck, E. 1980, A&A, 83, 1

    Google Scholar 

  • Lampland, C.O. 1921, Pub. A.S.P., 33, 79

    Google Scholar 

  • Langdon, A.B., Arons, J., and Max, C.E. 1988, Phys.Rev.Lett., 61, 779

    Google Scholar 

  • Li, Z.-Y., and Arons, J. 1995, submitted to ApJ

  • Mestel, L., and Shibata, S. 1994, MNRAS, 271, 621

    Google Scholar 

  • Michel, F.C. 1974, ApJ, 192, 713

    Google Scholar 

  • Muslimov, A.G., and Tsygan, A.I. 1990, Astr. Th., 67, 263 (Soviet Astr. — AJ, 34, 133; 1992, MNRAS, 255, 61)

    Google Scholar 

  • Pelling, R.M., Paciesas, W.S., Peterson, L.E., Makashima, K., Oda, M., Ogawara, Y., and Miyamoto, S. 1987, ApJ, 319, 416.

    Google Scholar 

  • Piddington, J.H. 1957, Aust. J. Phys., 10, 530.

    Google Scholar 

  • Quenby, J.R., and Lieu, R. 1989, Nature, 342, 654.

    Google Scholar 

  • Rees, M.J., and Gunn, J.E. 1974, MNRAS, 167, 1

    Google Scholar 

  • Ruderman, M.A., and Sutherland, P.G. 1975, ApJ, 196, 51

    Google Scholar 

  • Ruderman, M.A. 1991, ApJ, 366, 261

    Google Scholar 

  • Scargle, J.D. 1969, ApJ, 156, 401

    Google Scholar 

  • Scharlemann, E.T., Arons, J., and Fawley, W.M. 1978, ApJ, 222, 297

    Google Scholar 

  • Smith, F.G. 1986, MNRAS, 219, 729

    Google Scholar 

  • Sturrock, P.A. 1971, ApJ, 164, 529

    Google Scholar 

  • Trumper, J. 1993, in Texas/Pascos '92: Relativistic Astrophysics and Cosmology, C.W. Akerlof and M.A Srednicki, eds. (New York: New York Academy of Sciences), 260

    Google Scholar 

  • van den Bergh, S., and Pritchet, C.J. 1989, ApJ, 343, L69.

    Google Scholar 

  • Ulmer, M. 1994, ApJ (Supp.), 156, 401

    Google Scholar 

  • Vacanti, G., Cawley, M.F., Colombo, E., Fegan, D.J., Hilas, A.M., Kwok, P.W., Lang, M.J., Lamb, R.C., Lewis, D.A., Macomb, D.J., O'Flaherty, K.S., Reynolds, P.T., and Weekes, T.C. 1991, ApJ, 377, 467

    Google Scholar 

  • Weiler, K.W. 1978, Mem. Soc. Astr. Ital., 49, 545

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arons, J. Pulsars as gamma ray sources: Nebular shocks and magnetospheric gaps. Space Sci Rev 75, 235–255 (1996). https://doi.org/10.1007/BF00195037

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00195037

Keywords

Navigation