Skip to main content
Log in

The zebrafish brain: a neuroanatomical comparison with the goldfish

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

The zebrafish Danio rerio is an important model system for genetic and developmental studies of the vertebrate central nervous system. Considerable knowledge concerning the embryonic development of the central nervous system of the zebrafish has accumulated in recent years. However, there is an apparent lack of information on the organization of the adult zebrafish brain. We have therefore recently studied in detail the neuroanatomy of the adult zebrafish. Here we compare the brains of the zebrafish and of the closely related and neurobiologically well-investigated goldfish, Carassius auratus. Two sensory systems, the visual and the gustatory systems, were identified as differing on the gross morphological and histological levels in the two species. The goldfish shows the simple (evolutionarily reduced) pattern of pretectal organization, and its gustatory system is massively enlarged. The pretectum of the zebrafish conforms to this simplified visual pretectal pattern, although the retention of some ancestral pretectal characters indicates a lesser degree of reduction of the visual system compared to the goldfish. The gustatory system shows many similarities with the evolutionarily derived and functionally specialized gustatory system of the goldfish. However, some peripheral and central gustatory characters are missing in the zebrafish, indicating a less specialized gustatory system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akimenko M-A, Ekker M, Wegner J, Lin W, Westerfield M (1994) Combinatorial expression of three zebrafish genes related to distal-less: part of a homeobox gene code for the head. J Neurosci 14:3475–3486

    Google Scholar 

  • Atema J (1971) Structures and functions of the sense of taste in the catfish (Ictalurus natalis). Brain Behav Evol 4:273–294

    Google Scholar 

  • Barman JP (1991) A taxonomic revision of the Indo-Burmese species of Danio Hamilton-Buchanan (Pisces, Cyprinidae). Rec Zool Surv India Occas Pap 137:1–91

    Google Scholar 

  • Bartheld CS von, Meyer DL, Fiebig E, Ebbesson SOE (1984) Central connections of the olfactory bulb in the goldfish, Carassius auratus. Cell Tissue Res 238:475–487

    Google Scholar 

  • Bernhardt RR, Chitnis AB, Lindamer L, Kuwada JY (1990) Identification of spinal neurons in the embryonic and larval zebrafish. J Comp Neurol 302:603–616

    Google Scholar 

  • Butler AB, Wullimann MF, Northcutt RG (1991) Comparative cytoarchitectonic analysis of some visual pretectal nuclei in teleosts. Brain Behav Evol 38:92–114

    Google Scholar 

  • Chitnis AB, Kuwada JY (1990) Axonogenesis in the brain of zebrafish embryos. J Neurosci 10:1892–1905

    Google Scholar 

  • Echteler SM, Saidel WM (1981) Forebrain connections in the goldfish support telencephalic homologies with land vertebrates. Science 212:683–684

    Google Scholar 

  • Eisen J, Myers PZ, Westerfield M (1986) Pathway selection by growth cones of identified motoneurons in live zebrafish embryos. Nature 320:269–271

    Google Scholar 

  • Ekker M, Wegner J, Akimenko M-A, Westerfield M (1992) Coordinate embryonic expression of three zebrafish engrailed genes. Development 116:1001–1010

    CAS  PubMed  Google Scholar 

  • Fjose A, Njolstad PR, Nornes S, Molven A, Krauss S (1992) Structure and early embryonic expression of the zebrafish engrailed-2 gene. Mech Dev 39:51–62

    Google Scholar 

  • Fraley SM, Sharma SC (1984) Topography of retinal axons in the diencephalon of goldfish. Cell Tissue Res 238:529–538

    Google Scholar 

  • Hanneman E, Westerfield M (1989) Early expression of acetylcholinesterase activity in functional distinct neurons of the zebrafish. J Comp Neurol 284:350–361

    Google Scholar 

  • Hanneman E, Trevarrow B, Metcalfe WK, Kimmel CB, Westerfield M (1988) Segmental pattern of development in the hindbrain and spinal cord of the zebrafish embryo. Development 103:49–58

    Google Scholar 

  • Hatta K, Bremiller R, Westerfield M, Kimmel C Westerfield M, Kimmel C (1991) Diversity of expression of engrailed-like antigens in zebrafish. Development 112:821–832

    Google Scholar 

  • Kanwal JS, Finger TE (1992) Central representation and projections of gustatory systems. In: Hara TJ (ed) Fish chemoreception. Chapman & Hall, London, pp 79–102

    Google Scholar 

  • Karlstrom R, Trowe T, Baier H, Klostermann S, Bonhoeffer F (1995) Zebrafish mutations affecting retinotectal axon pathfinding. Soc Neurosci Abstr 21:1511

    Google Scholar 

  • Kimmel CB (1993) Patterning the brain of the zebrafish embryo. Annu Rev Neurosci 16:707–732

    Google Scholar 

  • King WM, Schmidt JT (1993) Nucleus isthmi in goldfish: in vitro recordings and fiber connections revealed by HRP injections. Vis Neurosci 10:419–437

    Google Scholar 

  • Krauss S, Johansen T, Korzh V, Fjose A (1991) Expression pattern of zebrafish pax genes suggests a role in early brain regionalization. Nature 353:267–270

    Google Scholar 

  • Kuwada JY, Bernhardt R, Nguyen N (1990) Development of spinal neurons and tracts in the zebrafish embryo. J Comp Neurol 302:617–628

    Google Scholar 

  • Lauder GV, Liem KF (1983) The evolution and interrelationships of the actinopterygian fishes. Bull Mus Comp Zool 150:95–197

    Google Scholar 

  • Levine RL, Dethier S (1985) The connections between the olfactory bulb and the brain in the goldfish. J Comp Neurol 237:427–444

    Google Scholar 

  • Luiten PGM (1975) The central projections of the trigeminal, facial and anterior lateral line nerves in the carp (Cyprinus carpio L.). J Comp Neurol 160:399–418

    Google Scholar 

  • McCormick CA, Braford MR Jr (1994) Organization of inner ear endorgan projections in the goldfish, Carassius auratus. Brain Behav Evol 43:189–205

    Google Scholar 

  • Meek J (1990) Tectal morphology: connections, neurons and synapses. In: Douglas RH, Djamgoz MBA (eds) The visual system of fish. Chapman & Hall, London, pp 239–277

    Google Scholar 

  • Mendelson B (1986) Development of reticulospinal neurons of the zebrafish. II. Early axonal outgrowth and cell body position. J Comp Neurol 251:172–184

    Google Scholar 

  • Metcalfe WK, Mendelson B, Kimmel CB (1986) Segmental homologies among reticulospinal neurons in the hindbrain of the zebrafish larva. J Comp Neurol 251:147–159

    Google Scholar 

  • Metcalfe WK, Myers PZ, Trevarrow B, Bass MB, Kimmel CB (1990) Primary neurons that express the L2/HNK-1 carbohydrate during early development in the zebrafish. Development 110:491–504

    Google Scholar 

  • Molven A, Njolstad PR, Fjose A (1991) Genomic structure and restricted neural expression of the zebrafish wnt-1 (int-1) gene. EMBO J 10:799–807

    Google Scholar 

  • Morita A, Finger TE (1985) Topographic and laminar organization of the vagal gustatory system in the goldfish, Carassius auratus. J Comp Neurol 238:187–201

    Google Scholar 

  • Morita Y, Ito H, Masai H (1980) Central gustatory paths in the crucian carp, Carassius carassius. J Comp Neurol 191:119–132

    Google Scholar 

  • Morita Y, Murakami T, Ito H (1983) Cytoarchitecture and topographic projections of the gustatory centers in a teleost, Carassius carassius. J Comp Neurol 218:378–394

    Google Scholar 

  • Mullins MC, Nüsslein-Volhard C (1993) Mutational approaches to study embryonic pattern formation in the zebrafish. Curr Opin Genet Dev 3:648–654

    Google Scholar 

  • Murakami T, Morita Y, Ito H (1986) Cytoarchitecture and fiber connections of the superficial pretectum in a teleost, Navodon modestus. Brain Res 373:213–221

    Google Scholar 

  • Myers PZ (1985) Spinal motoneurons of the larval zebrafish. J Comp Neurol 236:555–561

    Google Scholar 

  • Njolstad PR, Molven A, Apold J, Fjose A (1990) The zebrafish homeobox gene hox-2.2: transcription unit, potential regulatory regions and in situ localization of transcripts. EMBO J 9:515–524

    Google Scholar 

  • Northcutt RG (1983) Evolution of the optic tectum in ray-finned fishes. In: Davis RE, Northcutt RG (eds) Fish neurobiology, vol 2. University of Michigan Press, Ann Arbor, pp 1–42

    Google Scholar 

  • Northcutt RG, Wullimann MF (1988) The visual system in teleost fishes: morphological patterns and trends. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, Berlin Heidelberg New York, pp 515–552

    Google Scholar 

  • Oxtoby E, Jowett T (1993) Cloning of the zebrafish krox-20 gene (krx-20) and its expression during hindbrain development. Nucleic Acids Res 21:1087–1095

    Google Scholar 

  • Püschel AW, Gruss P, Westerfield M (1992) Sequence and expression pattern of pax-6 are highly conserved between zebrafish and mice. Development 114:643–651

    Google Scholar 

  • Puzdroswski RL (1987) The peripheral distribution and central projections of the sensory rami of the facial nerve in goldfish, Carassius auratus. J Comp Neurol 259:382–392

    Google Scholar 

  • Puzdrowski RL (1988) Afferent projections of the trigeminal nerve in the goldfish, Carassius auratus. J Morphol 198:131–147

    Google Scholar 

  • Puzdrowski RL (1989) Peripheral distribution and central projections of the lateral-line nerves in goldfish, Carassius auratus. Brain Behav Evol 34:110–131

    Google Scholar 

  • Romeis B (1989) Mikroskopische Technik. Urban & Schwarzenberg, Munich

    Google Scholar 

  • Ross LS, Parrett T, Easter SS (1992) Axongenesis and morphogenesis in the embryonic zebrafish brain. J Neurosci 12:467–482

    Google Scholar 

  • Rowe JS, Beauchamp RD (1982) Visual responses of nucleus corticalis neurons in the perciform teleost, northern rock bass (Ambloplites rupestris rupestris). Brain Res 236:205–209

    Google Scholar 

  • Rupp B (1995) Neuroanatomy of the zebrafish brain (Danio rerio/Cypriniformes/Teleostei). PhD thesis, University of Basel

  • Sakomoto N, Ito H (1982) Fiber connections of the corpus glomerulosum in a teleost, Navodon modestus. J Comp Neurol 205:291–298

    Google Scholar 

  • Sibbing FA, Uribe R (1985) Regional specializations in the oropharyngeal wall and food processing in the carp (Cyrpinus carpio L.). Neth J Zool 35:377–422

    Google Scholar 

  • Sibbing FA, Osse JW, Terlouw A (1986) Food handling in the carp (Cyprinus carpio): its movement patterns, mechanisms and limitations. J Zool Lond 210:161–203

    Google Scholar 

  • Solnica-Krezel L, Schier AF, Driever W (1994) Efficient recovery of ENU induced mutations from the zebrafish. Genetics 136:1401–1420

    Google Scholar 

  • Springer AD, Gaffney JS (1981) Retinal projections in the goldfish: a study using cobaltous-lysine. J Comp Neurol 203:401–424

    Google Scholar 

  • Striedter GF, Northcutt RG (1989) Two distinct visual pathways through the superficial pretectum in a precomorph teleost. J Comp Neurol 283:342–354

    Google Scholar 

  • Westerfield M (1993) The zebrafish book. A guide for the laboratory use of the zebrafish (Brachydanio rerio). University of Oregon Press, Eugene

    Google Scholar 

  • Wilson SW, Ross LS, Parrett T, Easter SS Jr (1990) The development of a simple scaffold of axon tracts in the brain of the embryonic zebrafish, Brachydanio rerior. Development 108:121–145

    Google Scholar 

  • Wullimann MF (1988) The tertiary gustary center in sunfishes is not nucleus glomerulosus. Neurosci Lett 86:6–10

    Google Scholar 

  • Wullimann MF, Meyer DL (1990) Phylogeny of putative cholinergic visual pathways through the pretectum to the hypothalamus in teleost fish. Brain Behav Evol 36:14–29

    Google Scholar 

  • Wullimann MF, Meyer DL (1993) Possible multiple evolution of indirect telenecephalo-cerebellar pathways in teleosts: studies in Carassius auratus and Pantodon buchholzi. Cell Tissue Res 274:447–455

    Google Scholar 

  • Wullimann MF, Meyer DL, Northcutt RG (1991) The visually related posterior pretectal nucleus in the non-percomorph teleost Osteoglossum bicirrhosum projects to the hypothalamus: a DiI study. J Comp Neurol 312:415–435

    Google Scholar 

  • Wullimann MF, Rupp B, Reichert H (1996) Neuroanatomy of the zebrafish Danio rerio: a topological atlas. Birkhäuser, Basel

    Google Scholar 

  • Yoshimoto M, Ito H (1993) Cytoarchitecture, fiber connections, and ultrastructure of the nucleus pretectalis superficialis pars magnocellularis (PSm) in carp. J Comp Neurol 336:433–446

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rupp, B., Reichert, H. & Wullimann, M.F. The zebrafish brain: a neuroanatomical comparison with the goldfish. Anat Embryol 194, 187–203 (1996). https://doi.org/10.1007/BF00195012

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00195012

Key words

Navigation