Skip to main content
Log in

The recombination activating gene 1 (RAG1) of rainbow trout (Oncorhynchus mykiss): cloning, expression, and phylogenetic analysis

  • Original Papers
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

The characterization of genes involved in the generation of the immune repertoire is an active area of research in lower vertebrate taxa. The recombination activating genes (RAG) have been shown to be essential for V (D) J recombination of T-cell antigen receptor (TCR) and immunoglobulin (Ig) genes, leading to the generation of the primary repertoire. As RAG1 is critical to the differentiation of pre-B and-T cells, its expression within an associated primary lymphoid organ can serve as a developmental marker. To examine the ontogeny of lymphocytes in Oncorhynchus mykiss, we cloned RAG1 from trout and examined its tissue-and lymphocyte-specific expression. The polymerase chain reaction, coupled with degenerate oligonucleotide primers, was used to amplify a homologous probe [(633 base pairs) (bp)] from rainbow trout genomic DNA, which in turn was used to isolate a lambda genomic clone. Sequence analysis of this genomic clone confirmed the RAG1 nature of this gene (3888 bp) and revealed an internal intron of 666 bp. When compared with other previously reported RAG1 sequences, the predicted amino acid translation (1073 aa) displayed a minimum of 78% similarity for the complete sequence and 89% similarity in the conserved region (aa 417-1042). Using northern blot analysis, we found the expression of RAG1 to be limited to surface Ig-n lymphocytes within the thymus. This data forms the basis for a proposal that the thymus of teleost species plays an essential developmental role in lymphopoiesis and thus can be regarded as a primary lymphoid organ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilera, A. and Klein, H. L. HRP1, a novel yeast gene that prevents intrachromosomal excision recombination, shows carboxy-terminal homology to the Saccharomyces cerevisiae TOP1 gene. Mol Cell Biol 10: 1439–1451, 1990

    Google Scholar 

  • Amemiya, C. T. and Litman, G. W. Complete nucleotide sequence of an immunoglobulin heavy-chain gene and analysis of immunoglobulin gene organization in a primitive teleost species. Proc Natl Acad Sci USA 87: 811–815, 1990

    Google Scholar 

  • Bosma, G. C., Custer, R. P., and Bosma, M. J. A severe combined immunodeficiency mutation in the mouse. Nature 301: 527–530, 1983

    Google Scholar 

  • Brunk, B. P., Martin, E. C., and Adler, P. N. Drosophila genes Posterior Sex Combs and Suppressor two of zeste encode proteins with homology to the murine bmi-1 oncogene. Nature 353: 351–353, 1991

    Google Scholar 

  • Carlson, L. M., Oettinger, M. A., Schatz, D. G., Masteller, E. L., Hurley, E. A., McCormack, Baltimore, D., and Thompson, C. B. Selective expression of RAG-2 in chicken B cells undergoing immunoglobulin gene conversion. Cell 64: 201–208, 1991

    Google Scholar 

  • Chomczynski, P. and Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156–159, 1987

    Article  CAS  PubMed  Google Scholar 

  • Daggfeldt, A., Bengtén, E., and Pilström, L. A cluster type organization of the loci of the immunoglobulin light chain in Atlantic cod (Gadus morhua L.) and rainbow trout (Oncorhynchus mykiss Walbaum) indicated by nucleotide sequences of cDNAs and hybridization analysis. Immunogenetics 38: 199–209, 1993

    CAS  PubMed  Google Scholar 

  • DeLuca, D., Wilson, M., and Warr, G. Lymphocyte heterogeneity in the trout, Salmo gairdneri, defined with monoclonal antibodies to IgM. Eur J Immunol 13: 546–551, 1983

    Google Scholar 

  • DeSoete, G. A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48: 621–626, 1983

    Google Scholar 

  • Devereux, J., Haeberli, P., and Smithies, O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12: 387–395, 1984

    CAS  PubMed  Google Scholar 

  • Dingwall, C. and Laskey, R. A. Nuclear targeting sequences — a consensus? Trends Biochem Sci 16: 478–481, 1991

    Google Scholar 

  • Du Pasquier, L., Schwager, J., and Flajnik, M. F. The immune system of Xenopus. Annu Rev Immunol 7: 251–275, 1989

    Google Scholar 

  • Earley, P., Rogers, J., Davies, M., Calame, K., and Hood, L. An immunoglobulin heavy chain variable region gene is generated from three segments of DNA: VH, D and JH. Cell 19: 981–992, 1980

    Google Scholar 

  • Ellis, A. E. Ontogeny of the immune response in Salmo salar. Histogenesis of the lymphoid organs and appearance of membrane immunoglobulin and mixed leucocyte reactivity. In J. B. Solomon and J. D. Horton (eds.): Developmental Biology, pp 225–277, Elsevier North Holland Biomed Press, Amsterdam, 1977

    Google Scholar 

  • Faisal, M. and Hetrick, F. Annual Review of Fish Diseases, Pergamon Press Ltd., New York, 1992

    Google Scholar 

  • Feinberg, A. P. and Vogelstein, B. A. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132: 6–13, 1983

    CAS  PubMed  Google Scholar 

  • Fellah, J. S., Kerfourn, F., Guillet, F., and Charlemagne, J. Conserved structure of amphibian T-cell antigen receptor B chain. Proc Natl Acad Sci 90: 6811–6814, 1993

    Google Scholar 

  • Felsenstein, J. Phylip: phylogeny inference program (V 3.2). Cladistics 5: 164–166, 1989

    Google Scholar 

  • Freemont, P. S., Hanson, I. M., and Trowsdale, J. A novel cysteine-rich sequence motif. Cell 64: 483–484, 1991

    Google Scholar 

  • Frohman, M. A., Dush, M. K., and Martin, G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA 85: 8998–9002, 1988

    CAS  PubMed  Google Scholar 

  • Fuschiotti, P., Nagaradona, H., Mage, R. G., McCormack, W. T., Dhanarajan, P., and Roux, K. H. Recombination activating genes-1 and-2 of the rabbit: cloning and characterization of germline and expressed genes. Mol Immunol 30: 1021–1032, 1993

    Google Scholar 

  • Grace, M. F. and Manning, M. J. Histogenesis of the lymphoid organs in the rainbow trout, Salmo gairdneri Rich. Dev Comp Immunol 4: 255–264, 1980

    Google Scholar 

  • Greenhalgh, P., Olesen, C. E., and Steiner, L. A. Characterization and expression of recombination activating genes (RAG-1 and RAG-2) in Xenopus laevis. J Immunol 151: 3100–3110, 1993

    Google Scholar 

  • Greenhalgh, P. and Steiner, L. A. Recombination activating gene 1 (RAG1) in zebrafish and shark. Immunogenetics 41: 54–55, 1995

    Google Scholar 

  • Hesse, J. E., Lieber, M. R., Mizuuchi, K., and Gellert, M. V (D) J recombination: a functional definition of the joining signals. Genes Dev 3: 1053–1061, 1989

    CAS  PubMed  Google Scholar 

  • Heinrich, G., Traunecker, A., and Tonegawa, S. Somatic mutation creates diversity in the major group of mouse immunoglobulin kappa-light chains. J Exp Med 159: 417–435, 1984

    Google Scholar 

  • Higgins, D. G., Bleasby, A. J., and Fuch, R. Clustal V: improved software for multiple sequence alignments. Comput Appl Biosci 8: 189–191, 1992

    CAS  PubMed  Google Scholar 

  • Hohman, V. S., Schluter, S. F., and Marchalonis, J. J. Complete sequence of a cDNA clone specifying sandbar shark immunoglobulin light chain: gene organisation and implications for the evolution of light chains. Proc Natl Acad Sci USA 89: 276–280, 1992

    Google Scholar 

  • Josefsson, S. and Tatner, M. F. Histogenesis of the lymphoid organs in sea bream (Sparus aurata L.) Fish and Shellfish Immunol 3: 35–49, 1993

    Google Scholar 

  • Kaattari, S. L. and Irwin, M. J. Salmonid spleen and anterior kidney harbor populations of lymphocytes with different B cell repertoires. Dev Comp Immunol 9: 433–444, 1985

    Google Scholar 

  • Kallenbach, S., Doyen, N., Fanton d'Andon, M., and Rougeon, F. Three lymphoid-specific factors account for all junctional diversity characteristic of somatic assembly of T-cell receptor and immunoglobulin genes. Proc Natl Acad Sci USA 89: 2799–2803, 1992

    Google Scholar 

  • Kokubu, F., Hinds, K., Litman, R., Shamblott, M. J., and Litman, G. W. Complete structure and organization of immunoglobulin heavy chain constant region genes in a phylogenetically primitive vertebrate. EMBO J 7: 1979–1988, 1988

    Google Scholar 

  • Kozak, M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44: 283–292, 1986

    Article  CAS  PubMed  Google Scholar 

  • Landau, R. E., Schatz, D. G., Rosa, M., and Baltimore, D. Increased frequency of N-regional insertion in a murine pre-B cell line infected with a terminal deoxynucleotidyl transferase retroviral expression vector. Mol Cell Biol 7: 3237–3243, 1987

    Google Scholar 

  • Li, W-H., Gouy, M., Sharp, P. M., O'hUigin, C., and Yang, Y-W. Molecular phylogeny of Rodentia, Lagomorpha, Primates, Artiodactyla, and Carnivora and molecular clocks. Proc Natl Acad Sci USA 87: 6703–6707, 1990

    Google Scholar 

  • Li, W-H. and Graur, D. Fundamentals of Molecular Evolution, Sinauer Associates, Sunderland, 1991

    Google Scholar 

  • Litman, G. W., Berger, L., Murphy, K., Litman, R., Hind, K., and Erickson, B. W. Immunoglobulin VH gene structure and diversity in Heterodontus, a phylogenetically primitive shark. Proc Natl Acad Sci USA 82: 2082–2086, 1985

    Article  Google Scholar 

  • Ma, A., Fisher, P., Dildrop, R., Oltz, E., Rathbun, G., Achacoso, P., Stall, A., and Alt, F. W. Surface IgM mediated regulation of RAG gene expression in Eμ-N-myc B cell lines. EMBO J 11: 2727–2734, 1992

    Google Scholar 

  • Mombaerts, P., Lacomini, J., Johnson, R. S., Herrup, K., Tonegawa, S., and Papaiannou, V. E. RAG-1 deficient mice have no mature B and T lymphocytes. Cell 68: 869–877, 1992

    Google Scholar 

  • Oettinger, M. A., Schatz, D. G., Gorka, C., and Baltimore, D. RAG-1 and RAG-2, adjacent genes that synergistically activate V (D) J recombination. Science 248: 1517–1523, 1990

    Google Scholar 

  • Partula, S., Fellah, J. S., Deguerra, A., and Charlemagne, J. Identification of cDNA clones encoding the T-cell receptor beta chain in the rainbow trout (Oncorhynchus mykiss). Compt Rend de L Acad Des Sci Serie III 317: 765–770, 1994

    Google Scholar 

  • Petrie, H. T., Livak, F., Schatz, D. G., Strasser, A., Crispe, N., and Shortman, K. Multiple rearrangements in T cell receptor alpha chain genes maximize the production of useful thymocytes. J Exp Med 178: 615–622, 1993

    Google Scholar 

  • Pough, F. H., Beiser, J. B., and McFarland, W. N. Vertebrate Life, Macmillan Press, New York, 1989

    Google Scholar 

  • Rast, J. P. and Litman, G. W. T-cell receptor gene homologs are present in the most primitive jawed vertebrates. Proc Natl Acad Sci USA 91: 9248–9252, 1994

    Google Scholar 

  • Rast, J. P., Anderson, M. K., Ota, T., Litman, R. T., Margittai, M., Shamblott, M. J., and Litman, G. W. Immunoglobulin light chain class multiplicity and alternative organizational forms in early vertebrate phylogeny. Immunogenetics 40: 83–90, 1994

    CAS  PubMed  Google Scholar 

  • Razquin, B. E., Castillo, A., Lopez-Fierro, P., Alvarez, F., Zapata, A., and Villena, A. J. Ontogeny of IgM-producing cells in the lymphoid organs of rainbow trout, Salmo gairdneri Richardson: an immuno- and enzyme-histochemical study. J Fish Biol 36: 159–173, 1990

    Google Scholar 

  • Renu, J., Gomer, H., and Murtagh, J. J. Increasing specificity from the PCR-RACE technique. Biotechniques 12: 58–59, 1992

    Google Scholar 

  • Sakano, H., Maki, R., Kurosawa, Y., Roeder, W., and Tonegawa, S. Two types of somatic recombination are necessary for the generation of complete immunoglobulin heavy chain genes. Nature 286: 676–683, 1980

    Google Scholar 

  • Sanger, F., Nicklen, S., and Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467, 1977

    CAS  PubMed  Google Scholar 

  • Schatz, D. G. and Baltimore, D. Stable expression of immunoglobulin gene V (D) J recombinase activity by gene transfer into 3T3 fibroblasts. Cell 53: 107–115, 1988

    Google Scholar 

  • Schatz, D. G., Oettinger, M. A., and Baltimore, D. The V (D) J recombination activating gene, RAG-1. Cell 59: 1035–1048, 1989

    Google Scholar 

  • Schatz, D. G., Oettinger, M. A., and Schissel, M. S. V (D) J recombination. Molecular biology and regulation. Annu Rev Immunol 10: 359–383, 1992

    Google Scholar 

  • Schuler, W., Weiler, I. J., Schuler, A., Phillips, R. A., Rosenberg, N., Mak, T. W., Kearney, J. F., Perry, R. P., and Bosma, M. J. Rearrangement of antigen receptor genes is defective in mice with severe combined immune deficiency. Cell 46: 963–972, 1986

    Google Scholar 

  • Schwager, J., Grossberger, D., and Du Pasquier, L. Organization and rearrangement of immunoglobulin M genes in the amphibian Xenopus. EMBO J 7: 2409–2415, 1988

    Google Scholar 

  • Schwager, J., Burckert, N., Schwager, M., and Wilson, M. Evolution of immunoglobulin light chain genes: analysis of Xenopus IgL isotypes and their contribution to antibody diversity. EMBO J 10: 505–511, 1991

    Google Scholar 

  • Shinkai, Y. G., Rathbun, G., Lam, K. P., Oetz, E. M., Stewart, V., Mendelson, M., Charron, J., Datta, M., Young, F., Stall, A. M., and Alt, F. W. RAG-2 deficient mice lack mature lymphocytes owing to inability to initiate V (D) J rearrangement. Cell 68: 855–867, 1992

    Google Scholar 

  • Silver, D. P., Spanopoulou, E., Mulligan, R. C., and Baltimore, D. Dispensable sequence motifs in the RAG-1 and RAG-2 genes for plasmid V (D) J recombination. Proc Natl Acad Sci USA 90: 6100–6104, 1993

    Google Scholar 

  • Strauss, W. M. Preparation of genomic DNA from mammalian tissue. In F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (eds): Current Protocols in Molecular Biology, Vol 1, pp 2.2.1–2.2.3, Greene Publishing Associates and Wiley-Interscience, New York, 1989

    Google Scholar 

  • Takeda, S., Masteller, E. L., Thompson, C. B., and Buerstedde, J. M. RAG-2 expression is not essential for chicken immunoglobulin gene conversion. Proc Natl Acad Sci USA 89: 4023–4027, 1992

    Google Scholar 

  • Tatner, M. F. The migration of labeled thymocytes to the peripheral lymphoid organs in the rainbow trout, Salmo gairdneri Richardson. Dev Comp Immunol 9: 85–91, 1985

    Google Scholar 

  • Tonegawa, S. Somatic generation of antibody diversity. Nature 302: 575–581, 1983

    CAS  PubMed  Google Scholar 

  • Wang, J. C., Caron, P. R., and Kim, R. A. The role of DNA topoisomerase in recombination and genome stability: a double edged sword? Cell 62: 403–406, 1990

    Google Scholar 

  • Wilson, M. R., Marcus, A., van Ginkel, F., Miller, N. W., Clem, L. W., Middleton, D., and Warr, G. W. The immunoglobulin M heavy chain constant region of the channel catfish, Ictalurus punctatus: an unsual mRNA splice pattern produces the membrane form of the molecule. Nucleic Acid Res 18: 5227–5233, 1990

    Google Scholar 

  • Yancopoulos, G., Blackwell, T. K., Suh, H., Hood, L., and Alt, F. W. Introduced T-cell receptor variable region gene segments recombine in pre-B cells: evidence that B and T cells use a common recombinase. Cell 44: 251–259, 1986

    Google Scholar 

  • Zachau, H. Immunoglobulin light-chain genes of the K type in man and mouse. In T. Honjo, F. W. Alt, and T. H. Rabbitts (eds.): Immunoglobulin Genes, pp. 92–109, Academic Press, London, 1989

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, J.D., Kaattari, S.L. The recombination activating gene 1 (RAG1) of rainbow trout (Oncorhynchus mykiss): cloning, expression, and phylogenetic analysis. Immunogenetics 42, 188–195 (1995). https://doi.org/10.1007/BF00191224

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00191224

Keywords

Navigation