Skip to main content
Log in

Constant temperature and pressure monte carlo study of the order-disorder transition of Cu3Au

  • Published:
Interface Science

Abstract

An N-body potential is found for the intermetallic Cu3Au and is tested for both the static and dynamic properties. This potential is a better approximation than the pair potentials and can be used for the description of defects and the relaxation effects on the order-disorder transition. It is the first time that such a potential can reproduce the dynamical properties of a first-order phase transition. Although the transition temperature is lower than the experimental findings by 25%, it is found that many of the macroscopic properties change at the critical point in a steplike fashion and have, compared to known experimental data, the correct discontinuity. This is quite remarkable since all the parameters have been determined at T=0 K. Also the chemical potential difference between Cu and Au is determined for the stoichiometry of Cu3Au. This quantity is continuous at the transition temperature and shows a discontinuity in its slope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M.Cowley, J. Appl. Phys. 21, 24 (1950).

    Google Scholar 

  2. J.M.Cowley, Phys. Rev. 77, 669 (1950).

    Google Scholar 

  3. K.F.LudwigJr., G.B.Stephenson, J.L.Jordan-Sweet, J.Mainville, Y.S.Yang, and M.Sutton, Phys. Rev. Lett. 61, 1859 (1988).

    Google Scholar 

  4. L.D.Fosdick, Phys. Rev. 116, 565 (1959).

    Google Scholar 

  5. R.F.ShannonJr., C.R.Harkless, and S.E.Nagler, Phys. Rev. B 38, 9327 (1988).

    Google Scholar 

  6. B.D.Gaulin, E.D.Hallman, and E.C.Svensson, Phys. Rev. Lett. 64, 289 (1990).

    Google Scholar 

  7. F.D. Ticheelaar, Grain-Boundary Structure in Ordered Alloys, PhD thesis (1990).

  8. J.G.Antonopoulos, F.W.Schapink, and F.D.Tichelaar, Phil. Mag. Lett. 61, 195 (1990).

    Google Scholar 

  9. G.C.Kuezynski, M.Doyama, and M.E.Fine, J. Appl. Phys. 27, 651 (1956).

    Google Scholar 

  10. D.G.Morris, Phys. Stat. Sol. (a) 32, 145 (1975).

    Google Scholar 

  11. P.Bardhan and J.B.Cohen, Acta Cryst. A 32, 597 (1976).

    Google Scholar 

  12. G.H.Lander, P.J.Brown, and J.FaberJr., J. Phys. C: Solid State Phys. 15, 6699 (1982).

    Google Scholar 

  13. G.H.Lander and P.J.Brown, J. Phys. C: Solid State Phys. 18, 2017 (1985).

    Google Scholar 

  14. K.Binder, Phys. Rev. Lett. 45, 811 (1980).

    Google Scholar 

  15. V.S.Sundaram, B.Farrell, R.S.Alben, and W.D.Robertson, Phys. Rev. Lett. 31, 1136 (1973).

    Google Scholar 

  16. A.Finel, V.Mazauric, and F.Ducastelle, Phys. Rev. Lett. 65, 1016 (1990).

    Google Scholar 

  17. R.W. Cahn, MRS Bulletin 18, May (1991).

  18. M.W.Finnis and J.E.Sinclair, Phil. Mag. A 50, 45 (1984).

    Google Scholar 

  19. J.R.Smith and D.J.Srolovitz, Modelling Simul. Mater. Sci. Eng. 1, 101 (1992).

    Google Scholar 

  20. G.J.Ackland, G.Tichy, V.Vitek, and M.W.Finnis, Phil. Mag. A 56, 735 (1987).

    Google Scholar 

  21. S.M.Foiles, M.I.Baskes, and M.S.Daw, Phys. Rev. B 33, 7983 (1986).

    Google Scholar 

  22. H.Y.Wang, R.Najafabadi, D.J.Srolovitz, and R.LeSar, Interface Science 1, 7 (1993).

    Google Scholar 

  23. H.Y.Wang, R.Najafabadi, D.J.Srolovitz, and R.LeSar, Interface Science 1, 31 (1993).

    Google Scholar 

  24. S.R. Phillpot, S. Yip, and D. Wolf, Computers in Physics 20, Nov./Dec., (1989).

  25. C.Rey-Losada, M.Hayoun, and V.Pontikis, Mat. Res. Soc. Symp. Proc. 291, 549 (1993).

    Google Scholar 

  26. N.Metropolis, A.W.Rosenbluth, M.N.Rosenbluth, A.H.Teller, and E.Teller, J. Chem. Phys. 21, 1087 (1953).

    Google Scholar 

  27. I.J.Robertson, M.C.Payne, and V.Heine, Europhys. Lett. 15, 301 (1991).

    Google Scholar 

  28. B.Loisel, D.Gorse, V.Pontikis, and J.Lapujoulade, Surf. Sci. 221, 365 (1989).

    Google Scholar 

  29. H.M.Polatoglou, K.Magoutis, and G.L.Bleris, Materials Science Forum 623, 126 (1993).

    Google Scholar 

  30. V.Rosato, M.Guillope, and B.Legrand, Phil. Mag. A 59, 321 (1989).

    Google Scholar 

  31. C.Kittel, in Introduction to Solid State Physics, 5th ed. (John Wiley, New York, 1976).

    Google Scholar 

  32. R.O.Simmons and H.Wang, in Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (MIT Press, Cambridge Mass, 1971).

    Google Scholar 

  33. S.H.Wei, A.A.Mbaye, L.G.Ferreira, and A.Zunger, Phys. Rev. B 36, 4163 (1987).

    Google Scholar 

  34. U.Walzer, Phys. Stat. Sol. (b) 140, 377 (1987).

    Google Scholar 

  35. P.C.Gehlen, Phys. Rev. 129, 715 (1963).

    Google Scholar 

  36. C.J.Martin and D.A.O'Connor, J. Phys. C 10, 3521 (1977).

    Google Scholar 

  37. P.A.Flinn, G.M.McManus, and J.A.Rayns, J. Phys. Chem. Solids 15, 189 (1960).

    Google Scholar 

  38. A.P.Sutton and J.Chen, Phil. Mag. Lett. 61, 139 (1990).

    Google Scholar 

  39. R.Hultgren, R.L.Orr, P.D.Anderson, and K.K.Kelley, in Selected Values of the Thermodynamic Properties of Metals and Binary Alloys (John Wiley, New York, 1963).

    Google Scholar 

  40. R.Feder, M.Mooney, and A.S.Nowick, Acta Met. 6, 266 (1958).

    Google Scholar 

  41. S.C.Moss, J. Appl. Phys. 12, 3547 (1964).

    Google Scholar 

  42. D.R.Chipman, J. Appl. Phys. 27, 739 (1956).

    Google Scholar 

  43. C.Sykes and F.W.Jones, Proc. Roy. Soc. London, Ser. A 157, 213 (1938).

    Google Scholar 

  44. R.L.Orr, Acta Metall. 8, 489 (1960).

    Google Scholar 

  45. R.L.Orr, J.Luciat-Labry, and R.Hultgren, Acta Metall. 8, 431 (1960).

    Google Scholar 

  46. H.M. Polatoglou, Computational Materials Science, in press; ibid, J. Phys. C Cond. Mat., in press; ibid, Interface Science 2, 67 (1994).

  47. V.S.Sundaram, R.S.Alben, and W.D.Robertson, Surf. Science 46, 653 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polatoglou, H.M., Bleris, G.L. Constant temperature and pressure monte carlo study of the order-disorder transition of Cu3Au. Interface Sci 2, 31–44 (1994). https://doi.org/10.1007/BF00188817

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00188817

Keywords

Navigation