Skip to main content
Log in

Neuronal architecture of the human temporal cortex

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

The cortex of the superior, middle and inferior temporal gyri of the human cerebral hemispheres was investigated using Nissl, Golgi and fibre staining techniques. Brodmann's (1909) area 41, corresponding to the primary auditory cortex in Heschl's transverse temporal gyri, consisted of typical koniocortex, and formed the middle part of the superior temporal plane (the buried lower bank of the Sylvian fissure). Anteriorly the superior temporal plane contained area 22, and posteriorly the planum temporale (part of area 42). The lateral surfaces of the superior, middle and inferior temporal gyri respectively correspond to areas 22, 21 and 20. Neurons in much of the left temporal cortex, apart from area 41, formed radial columns. This columnar organisation was most pronounced posteriorly and superiorly, so that anterior area 20 was the least columnar and area 42 the most. The right temporal cortex was markedly less columnar than the left. Golgi studies showed a variety of pyramidal and non-pyramidal neurons, with specific varieties typical of individual cortical layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Braak H (1980) Architectonics of the human telencephalic cortex. Springer, Berlin Heidelberg

    Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. J.A. Barth, Leipzig

    Google Scholar 

  • Brugge JF, Reale RA (1985) Auditory cortex. In: Peters A, Jones EG (eds) Cerebral cortex, vol 4. Association and auditory cortices. Plenum Press, New York, pp 229–271

    Google Scholar 

  • Cajal SR (1911) Histologie du système nerveux de l'homme et des vertébrés. Paris, Maloine. (CSIC, Madrid, 1955)

    Google Scholar 

  • Campbell AW (1905) Histological studies on the localization of cerebral function. Cambridge University Press, Cambridge

    Google Scholar 

  • Conel JL (1939–1967) The postnatal development of the human cerebral cortex. Harvard University Press, Cambridge

    Google Scholar 

  • Creutzfeldt O, Ojemann G, Lettich E (1987) Single neuron activity in the right and left human temporal lobe during listening and speaking. In: Engel J, Ojemann GA, Lüders HO, Williamson PD (eds) Fundamental mechanisms of human brain function. Raven Press, New York, pp 69–81

    Google Scholar 

  • Cruz MC, Jeanmonod D, Meier K, Van der Loos H (1984) A silver and good technique for axons and axon-bundles in formalin-fixed central and peripheral nervous tissue. J Neurosci Methods 10:1–8

    Google Scholar 

  • Emson PC, Hunt SP (1981) Anatomical chemistry of the cerebral cortex. In: Schmitt FO, Worden FG, Adelman G, Dennis SG (eds) The organization of the cerebral cortex. MIT Press, Cambridge, pp 325–346

    Google Scholar 

  • Feldman ML (1984) Morphology of the neocortical pyramidal neuron. In: Peters A, Jones EG (eds) Cerebral cortex, vol 1. Cellular components of the cerebral cortex. Plenum Press, New York, pp 123–200

    Google Scholar 

  • Feldman ML, Peters A (1978) The forms of non-pyramidal neurons in the visual cortex of the rat. J Comp Neurol 179:761–794

    Google Scholar 

  • Ferrier D (1876) The functions of the brain. Smith, Elder, London

    Google Scholar 

  • Flechsig P (1896) Die Lokalisation der geistigen Vorgänge. Veit, Leipzig

    Google Scholar 

  • Galaburda AM, Pandya DN (1983) The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey. J Comp Neurol 221:169–184

    Google Scholar 

  • Galaburda A, Sanides F (1980) Cytoarchitectonic organization of the human auditory cortex. J Comp Neurol 190:597–610

    Google Scholar 

  • Galaburda AM, LeMay M, Kemper TL, Geschwind N (1978a) Right-left asymmetries in the brain. Science 199:852–856

    Google Scholar 

  • Galaburda AM, Sanides F, Geschwind N (1978b) Human brain. Cytoarchitectonic left-right asymmetries in the temporal speech region. Arch Neurol 35:812–817

    Google Scholar 

  • Garey LJ (1971) A light and electron microscopic study of the visual cortex of the cat and monkey. Proc R Soc Lond B 179:21–40

    Google Scholar 

  • Geschwind N, Levitsky W (1968) Human brain: left-right asymmetries in temporal speech region. Science 161:186–187

    Google Scholar 

  • Hendry SHC, Jones EG (1981) Sizes and distributions of intrinsic neurons incorporating tritiated GABA in monkey sensory-motor cortex. J Neurosci 1:390–408

    Google Scholar 

  • Heschl RL (1878) Über die vordere quere Schläfenwindung des menschlichen Grosshirns. Braumuller, Vienna

    Google Scholar 

  • Houser CR, Hendry SHC, Jones EG, Vaughn JE (1983) Morphological diversity of immunocytochemically identified GABA neurons in the monkey sensory-motor cortex. J Neurocytol 12:617–638

    Google Scholar 

  • Imig TJ, Ruggero MA, Kitzes LM, Javel E, Brugge JF (1977) Organization of auditory cortex in the owl monkey (Aotus trivirgatus). J Comp Neurol 171:111–128

    Google Scholar 

  • Jones EG (1975) Varieties and distribution of non-pyramidal cells in the somatic sensory cortex of the squirrel monkey. J Comp Neurol 160:205–268

    Google Scholar 

  • Jones EG (1984) Neurogliaform or spiderweb cells. In: Peters A, Jones EG (eds) Cerebral cortex, vol 1. Cellular components of the cerebral cortex. Plenum Press, New York, pp 409–418

    Google Scholar 

  • Jones EG, Hendry SHC (1984) Basket cells. In: Peters A, Jones EG (eds) Cerebral cortex, vol 1. Cellular components of the cerebral cortex. Plenum Press, New York, pp 309–336

    Google Scholar 

  • Lorén I, Emson PC, Fahrenkrug J, Björklund A, Alumets J, Håkanson R, Sundler F (1979) Distribution of vasoactive intestinal polypeptide in the rat and mouse brain. Neurosci 4:1953–1976

    Google Scholar 

  • Lund JS, Hendrickson AE, Ogren MP, Towbin EA (1981) Anatomical organization of primate visual cortex area VII. J Comp Neurol 202:19–45

    Google Scholar 

  • Luria AR (1966) Higher Cortical Functions in Man. Tavistock Publ, London

    Google Scholar 

  • Marin-Padilla M (1969) Origin of the pericellular baskets of the pyramidal cells of the human motor cortex: a Golgi study. Brain Res 14:633–646

    Google Scholar 

  • Marin-Padilla M (1974) Three-dimensional reconstruction of the pericellular nests (baskets) of the motor (area 4) and visual (area 17) areas of the human cerebral cortex: a Golgi study. Z Anat Entwicklungsgesch 144:123–135

    Google Scholar 

  • Merzenich MM, Brugge JF (1973) Representation of the cochlear partition on the superior temporal plane of the macaque monkey. Brain Res 50:275–296

    Google Scholar 

  • Ojemann GA, Creutzfeldt OD, Letich E (1987) Neuronal activity in human temporal cortex related to naming and short-term verbal memory. In: Engel J, Ojemann GA, Lüders HO, Williamson PD (eds) Fundamental mechanisms of human brain function. Raven Press, New York, pp 61–68

    Google Scholar 

  • O'Kusky J, Colonnier M (1932) A laminar analysis of the number of neurons, glia, and synapses in the visual cortex (area 17) of adult macaque monkeys. J Comp Neurol 210:278–290

    Google Scholar 

  • Pandya DN, Sanides F (1973) Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern. Z Anat Entwicklungsgesch 139:127–161

    Google Scholar 

  • Penfield W, Jasper H (1954) Epilepsy and the functional anatomy of the human brain. Little, Brown and Co, Boston

    Google Scholar 

  • Penfield W, Perot P (1963) The brain's record of auditory and visual experience. Brain 86:595–696

    Google Scholar 

  • Penfield W, Roberts L (1959) Speech and brain-mechanisms. Princeton University Press, Princeton

    Google Scholar 

  • Peters A (1984) Bipolar cells. In: Peters A, Jones EG (eds) Cerebral cortex, vol 1. Cellular components of the cerebral cortex. Plenum Press, New York, pp 381–407

    Google Scholar 

  • Peters A, Fairén A (1978) Smooth and sparsely-spined stellate cells in the visual cortex of the rat: a study using a combined Golgielectron microscopic technique. J Comp Neurol 181:129–172

    Google Scholar 

  • Peters A, Kimerer LM (1981) Bipolar neurons in the rat visual cortex: a combined Golgi-electron microscope study. J Neurocytol 10:921–946

    Google Scholar 

  • Peters A, Miller M, Kimerer LM (1983) Cholecystokinin-like immunoreactive neurons in rat cerebral cortex. Neurosci 8:431–448

    Google Scholar 

  • Rose JE (1949) The cellular structure of the auditory region of the cat. J Comp Neurol 91:409–439

    Google Scholar 

  • Rose JE, Woolsey CN (1949) The relations of thalamic connections, cellular structure and evocable electrical activity in the auditory region of the cat. J Comp Neurol 91:441–466

    Google Scholar 

  • Seldon HL (1981a) Structure of human auditory cortex. I. Cytoarchitectonics and dendritic distributions. Brain Res 229:277–294

    Google Scholar 

  • Seldon HL (1981b) Structure of human auditory cortex. II. Axon distributions and morphological correlates of speech perception. Brain Res 229:295–310

    Google Scholar 

  • Seldon HL (1982) Structure of human auditory cortex. III. Statistical analysis of dendritic trees. Brain Res 249:211–221

    Google Scholar 

  • Seldon HL (1985) The anatomy of speech perception. Human auditory cortex. In: Peters A, Jones EG (eds) Cerebral cortex, vol 4. Association and auditory cortices. Plenum Press, New York, pp 273–327

    Google Scholar 

  • Sims KB, Hoffman DL, Said SI, Zimmerman EA (1980) Vasoactive intestinal polypeptide (VIP) in mouse and rat brain: an immunocytochemical study. Brain Res 186:165–183

    Google Scholar 

  • Somogyi P, Cowey A (1981) Combined Golgi and electron microscopic study on the synapses formed by double bouquet cells in the visual cortex of the cat and monkey. J Comp Neurol 195:547–566

    Google Scholar 

  • Somogyi P, Cowey A (1985) Double bouquet cells. In: Peters A, Jones EG (eds) Cerebral Cortex, vol 1. Cellular components of the cerebral cortex. Plenum Press, New York, pp 337–360

    Google Scholar 

  • Szentágothai J (1973) Synaptology of the visual cortex. In: Jung R (ed) Handbook of sensory physiology, vol VII/3B. Springer, Berlin Heidelberg, pp 269–324

    Google Scholar 

  • Teszner D, Tzavaras A, Gruner J, Hecaen H (1972) L'asymétrie droite-gauche du planum temporale: à propos de l'étude anatomique de 100 cerveaux. Rev Neurol 126:444–449

    Google Scholar 

  • Tömböl T (1978) Some Golgi data on visual cortex of the rhesus monkey. Acta Morphol Acad Sci Hung 26:115–138

    Google Scholar 

  • Valverde F (1970) The Golgi method. A tool for comparative structural analyses. In: Nauta WJH, Ebbesson SOE (eds) Contemporary research methods in neuroanatomy. Springer, Berlin Heidelberg, pp 12–31

    Google Scholar 

  • Valverde F (1978) The organization of area 18 in the monkey. A Golgi study. Anat Embryol 154:305–334

    Google Scholar 

  • Van Essen DC (1985) Functional organization of primate visual cortex. In: Peters A, Jones EG (eds) Cerebral cortex, vol 3. Visual cortex. Plenum Press, New York, pp 259–329

    Google Scholar 

  • Vogt BA, Peters A (1981) Form and distribution of neurons in rat cingulate cortex: areas 32, 24 and 29. J Comp Neurol 195:603–625

    Google Scholar 

  • Von Bonin G, Bailey P (1947) The neocortex of Macaca mulatta, University of Illinois Press, Urbana

    Google Scholar 

  • Von Economo C, Horn L (1930) Über Windingsrelief, Masse und Rindenarchitektonik der Supratemporalfläche, ihre individuellen und ihre Scitenunterschiede. Z Ges Neurol Psychol 130:678–759

    Google Scholar 

  • Von Economo C, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Springer, Berlin Heidelberg

    Google Scholar 

  • Webster WR, Garey LJ (1990) Auditory system. In: Paxinos G (ed) The human nervous system. Academic Press, San Diego (in press)

    Google Scholar 

  • Wernicke C (1874) Der aphasische Symptomenkomplex. Cohn andWeigert, Breslau

    Google Scholar 

  • Williams PL, Warwick R (1980) The motor speech area. In: Williams PL, Warwick R (eds) Gray's Anatomy. Churchill Livingstone, Edinburgh, pp 1014–1015

    Google Scholar 

  • Witelson SF, Pallie W (1973) Left hemisphere specialization for language in the newborn. Neuroanatomical evidence of asymmetry. Brain 96:641–646

    Google Scholar 

  • Woolsey CN (1960) Organization of cortical auditory system: A review and a synthesis. In: Rasmussen GL, Windle WF (eds) Neural mechanisms of the auditory and vestibular systems. Thomas, Springfield, pp 165–180

    Google Scholar 

  • Woolsey CN (1971) Tonotopic organization of the auditory cortex. In: Sachs MB (ed) Physiology of the auditory system. National Educational Consultants, Baltimore, pp 271–282

    Google Scholar 

  • Woolsey CN, Waltzl EM (1982) Cortical auditory area of Macaca mulatto and its relation to the second somatic sensory area (SmII): Determination by electrical excitation of auditory nerve fibres in the spiral osseous lamina and by click stimulation. In: Woolsey CN (ed) Cortical Sensory Organization, vol 3. Humana Press, Clifton, pp 231–256

    Google Scholar 

  • Zilles K (1990) The cortex. In: Paxinos G (ed) The human nervous system. Academic Press, San Diego (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper represents part of a study for the degree of Ph.D. in the National University of Singapore by WYO

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ong, W.Y., Garey, L.J. Neuronal architecture of the human temporal cortex. Anat Embryol 181, 351–364 (1990). https://doi.org/10.1007/BF00186907

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00186907

Key words

Navigation